陶哲轩实分析(上)11.9及习题-Analysis I 11.9

Exercise 11.9.1

Since f f is monotonic increasing, f f is Riemann ingegrable and F F is well-defined.
We assume F ( x ) F(x) is differentiable at some q Q [ 0 , 1 ] q∈Q∩[0,1] , then if q 0 , q 1 q≠0,q≠1 , F F is differentiable at q q iff we have
lim x q ; x [ 0 , q ) F ( x ) F ( q ) x q = lim x q ; x ( q , 1 ] F ( x ) F ( q ) x q \lim_{x→q;x∈[0,q)}\frac{F(x)-F(q)}{x-q}=\lim_{x→q;x∈(q,1]}\frac{F(x)-F(q)}{x-q}
From Exercise 9.8.5 we know that f f is not continuous at q q and if we locate q = q ( n ) q=q(n) for some n N n∈\mathbf N as in Exercise 9.8.5, we shall have f ( x ) f ( q ) + 2 n , x > q f(x)≥f(q)+2^{-n},x>q , so
lim x q ; x [ 0 , q ) F ( x ) F ( q ) x q = lim x q ; x [ 0 , q ) x q f ( y ) d y x q lim x q ; x [ 0 , q ) x q f ( q ) d y x q = f ( q ) lim x q ; x ( q , 1 ] F ( x ) F ( q ) x q = lim x q ; x ( q , 1 ] q x f ( y ) d y x q lim x q ; x ( q , 1 ] q x ( f ( q ) + 2 n ) d y x q = f ( q ) + 2 n \lim_{x→q;x∈[0,q)}\frac{F(x)-F(q)}{x-q}=\lim_{x→q;x∈[0,q)}\frac{∫_x^qf(y)dy}{x-q}≤\lim_{x→q;x∈[0,q)}\frac{∫_x^qf(q)dy}{x-q}=f(q) \\ \lim_{x→q;x∈(q,1]}\frac{F(x)-F(q)}{x-q}=\lim_{x→q;x∈(q,1]}\frac{\int_q^xf(y)dy}{x-q}≥\lim_{x→q;x∈(q,1]}\frac{\int_q^x(f(q)+2^{-n})dy}{x-q}=f(q)+2^{-n}
Thus
lim x q ; x ( q , 1 ] F ( x ) F ( q ) x q lim x q ; x [ 0 , q ) F ( x ) F ( q ) x q 2 n \lim_{x→q;x∈(q,1]}\frac{F(x)-F(q)}{x-q}-\lim_{x→q;x∈[0,q)}\frac{F(x)-F(q)}{x-q}≥2^{-n}
contradicts the result that the two limits are equal.
If q = 0 q=0 or q = 1 q=1 , F F may be differentiable at q q by definition, since f f is continuous at 0 or 1 when restricted on [ 0 , 1 ] [0,1] .

Exercise 11.9.2

When I I is empty or a single point then the statement is trivial. Now suppose I I is a nonempty interval, choose some x 0 I x_0∈I , then for any x I , x x 0 x∈I,x≠x_0 , the function F G F-G is differentiable on [ x 0 , x ] [x_0,x] or [ x , x 0 ] [x,x_0] , thus we have some ξ ξ between x x and x 0 x_0 , s.t.
( F G ) ( x ) ( F G ) ( x 0 ) x x 0 = ( F G ) ( ξ ) = f ( ξ ) f ( ξ ) = 0 \frac{(F-G)(x)-(F-G)(x_0)}{x-x_0}=(F-G)' (ξ)=f(ξ)-f(ξ)=0
So we have
( F G ) ( x ) = F ( x ) G ( x ) = F ( x 0 ) G ( x 0 ) (F-G)(x)=F(x)-G(x)=F(x_0 )-G(x_0 )
This means if we let C = F ( x 0 ) G ( x 0 ) C=F(x_0)-G(x_0) , we will have F ( x ) = G ( x ) + C , x I , x x 0 F(x)=G(x)+C,∀x∈I,x≠x_0 , since we also have F ( x 0 ) = G ( x 0 ) + C F(x_0 )=G(x_0 )+C valid, the conclusion is true.
Alternatively, we can use the second Fundamental theorem of calculus, since
( F G ) ( x ) = 0 , x I (F-G)' (x)=0,\quad ∀x∈I
the function F G : I R F-G:I→\mathbf R is an antiderivative of the function g ( x ) = 0 , x I g(x)=0,x∈I . Since g g is constant, it is Riemann integrable, so choose some x 0 I x_0∈I , then for any x I , x x 0 x∈I,x≠x_0 , we can use the second Fundamental theorem of calculus on [ x 0 , x ] [x_0,x] or [ x , x 0 ] [x,x_0] and have
[ x 0 , x ] g = 0 = ( F G ) ( x ) ( F G ) ( x 0 ) ∫_{[x_0,x]}g=0=(F-G)(x)-(F-G)(x_0)
or
[ x , x 0 ] g = 0 = ( F G ) ( x 0 ) ( F G ) ( x ) ∫_{[x,x_0]}g=0=(F-G)(x_0 )-(F-G)(x)
In either case we have ( F G ) ( x 0 ) = ( F G ) ( x ) (F-G)(x_0)=(F-G)(x) , This means if we let C = F ( x 0 ) G ( x 0 ) C=F(x_0)-G(x_0) , we will have F ( x ) = G ( x ) + C , x I , x x 0 F(x)=G(x)+C,∀x∈I,x≠x_0 . Since we also have F ( x 0 ) = G ( x 0 ) + C F(x_0)=G(x_0)+C valid, the conclusion is true.

Exercise 11.9.3

Since f f is monotone increasing, f f is Riemann integrable, thus if f f is continuous at x 0 x_0 , then F F is differentiable at x 0 x_0 by the first Fundamental theorem of calculus.
Conversely we let F F is differentiable at x 0 x_0 and assume f f is not continuous at x 0 x_0 , then we shall have f ( x 0 ) < f ( x 0 + ) f(x_0-)<f(x_0+) , let η = ( f ( x 0 ) + f ( x 0 + ) ) / 2 η=(f(x_0-)+f(x_0+))/2 , then we can find ϵ > 0 ϵ>0 , s.t.
f ( x 0 ) < η ϵ < η < η + ϵ < f ( x 0 + ) f(x_0-)<η-ϵ<η<η+ϵ<f(x_0+)
As f f is monotone increasing, we know f ( x ) < η ϵ f(x)<η-ϵ if x < x 0 x<x_0 and f ( x ) > η + ϵ f(x)>η+ϵ if x > x 0 x>x_0 . Then for y > x 0 y>x_0 , we have
F ( y ) F ( x 0 ) = [ x 0 , y ] f > [ x 0 , y ] ( η + ϵ ) = ( η + ϵ ) ( y x 0 ) F(y)-F(x_0 )=∫_{[x_0,y]}f>∫_{[x_0,y]}(η+ϵ) =(η+ϵ)(y-x_0 )
And for y < x 0 y<x_0 , we have
F ( x 0 ) F ( y ) = [ y , x 0 ] f < [ y , x 0 ] ( η ϵ ) = ( η ϵ ) ( x 0 y ) F(x_0 )-F(y)=∫_{[y,x_0]}f<∫_{[y,x_0]}(η-ϵ) =(η-ϵ)(x_0-y)
So we have
lim y x 0 + F ( y ) F ( x 0 ) y x 0 η + ϵ > η lim y x 0 F ( y ) F ( x 0 ) y x 0 = lim y x 0 F ( x 0 ) F ( y ) x 0 y η ϵ < η \lim_{y→x_0+}\frac{F(y)-F(x_0)}{y-x_0}≥η+ϵ>η \\ \lim_{y→x_0-}\frac{F(y)-F(x_0)}{y-x_0}=\lim_{y→x_0-}\frac{F(x_0 )-F(y)}{x_0-y}≤η-ϵ<η
Thus F ( x 0 + ) > F ( x 0 ) F' (x_0+)>F' (x_0-) , a contradiction to F F being differentiable at x 0 x_0 .

发布了77 篇原创文章 · 获赞 14 · 访问量 2790

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/103956174