陶哲轩实分析(上)10.4及习题-Analysis I 10.4

反函数定理(实数轴上的),第二册中会有在n维欧式空间中的反函数定理。

Exercise 10.4.1

( a ) Since f ( x ) = x n , x ( 0 , ) f(x)=x^n,x∈(0,∞) is a continuous and strictly monotone increasing function, by Proposition 9.8.3, f 1 ( x ) = x 1 / n = g ( x ) f^{-1} (x)=x^{1/n}=g(x) is continuous on ( 0 , ) (0,∞) .
( b ) We already have f ( x ) = n x n 1 , x ( 0 , ) f' (x)=nx^{n-1},x∈(0,∞) , since g = f 1 , f g=f^{-1}, f is differentiable on ( 0 , ) (0,∞) , and g g is continuous by (a), we can use the inverse function theorem to say that g g is differentiable at any x ( 0 , ) x∈(0,∞) , further for x ( 0 , ) x∈(0,∞) , we have x 1 / n x^{1/n} such that f ( x 1 / n ) = x f(x^{1/n} )=x , thus
g ( x ) = 1 f ( x 1 / n ) = 1 n ( x 1 / n ) n 1 = 1 n x 1 n n = 1 n x 1 / n 1 g' (x)=\frac{1}{f'(x^{1/n})}=\frac{1}{n(x^{1/n})^{n-1} }=\frac{1}{n} x^{\frac{1-n}{n}}=\frac{1}{n} x^{1/n-1}

Exercise 10.4.2

( a ) As q Q q∈\mathbf Q , thus m Z , n N + ∃m∈\mathbf Z,n∈\mathbf N^+ , s.t. q = m / n q=m/n . By Exercise 10.4.1, we have g ( x ) = x 1 / n g(x)=x^{1/n} is differentiable on ( 0 , ) (0,∞) . And f ( x ) = [ g ( x ) ] m f(x)=[g(x)]^m , use Theorem 10.1.13 (d) and possibly (g), we can conclude f f is differentiable on ( 0 , ) (0,∞) . Use Theorem 10.1.15, we can say
f ( x ) = m [ g ( x ) ] m 1 g ( x ) = m x m 1 n ( 1 n x 1 / n 1 ) = m n x m 1 n + 1 n n = q x m n n = q x q 1 f' (x)=m[g(x)]^{m-1} g' (x)=mx^{\frac{m-1}{n}} \left(\frac{1}{n} x^{1/n-1} \right)=\frac{m}{n} x^{\frac{m-1}{n}+\frac{1-n}{n}}=qx^{\frac{m-n}{n}}=qx^{q-1}
( b ) We have f ( 1 ) = 1 q = 1 f(1)=1^q=1 , thus by part(a), f ( 1 ) f' (1) exists, so
lim x 1 ; x ( 0 , ) { 1 } x q 1 x 1 = lim x 1 ; x ( 0 , ) { 1 } f ( x ) f ( 1 ) x 1 = f ( 1 ) = q 1 q 1 = q \lim_{x→1;x∈(0,∞)-\{1\} }⁡\frac{x^q-1}{x-1}=\lim_{x→1;x∈(0,∞)-\{1\}}⁡\frac{f(x)-f(1)}{x-1}=f' (1)=q1^{q-1}=q
during which the second equality comes from Definition 10.1.1
Since the function ( x q 1 ) / ( x 1 ) (x^q-1)/(x-1) is undefined at x = 1 x=1 , we conclude
lim x 1 ; x ( 0 , ) { 1 } x q 1 x 1 = lim x 1 ; x ( 0 , ) { 1 } x q 1 x 1 = q \lim_{x→1;x∈(0,∞)-\{1\} }⁡\frac{x^q-1}{x-1}=\lim_{x→1;x∈(0,∞)-\{1\} }\frac{x^q-1}{x-1}=q

Exercise 10.4.3

( a ) Let ϵ > 0 ϵ>0 be an arbitrary small number, then as α R α∈\mathbf R , we can find p , q Q p,q∈\mathbf Q , s.t.
α ϵ < p < α < q < α + ϵ α-ϵ<p<α<q<α+ϵ
If x > 1 x>1 , then x p < x α < x q x^p<x^α<x^q , thus we have
x p 1 x 1 < x α 1 x 1 < x q 1 x 1 \frac{x^p-1}{x-1}<\frac{x^α-1}{x-1}<\frac{x^q-1}{x-1}
Use Exercise 10.4.2 we know that
lim x 1 ; x ( 1 , ) x p 1 x 1 = p , lim x 1 ; x ( 1 , ) x q 1 x 1 = q \lim_{x→1;x∈(1,∞) }\frac{x^p-1}{x-1}=p, \quad \lim_{x→1;x∈(1,∞) }⁡\frac{x^q-1}{x-1}=q
Thus we can say that
α ϵ < p lim x 1 ; x ( 1 , ) x α 1 x 1 q < α + ϵ α-ϵ<p≤\lim_{x→1;x∈(1,∞) }⁡\frac{x^α-1}{x-1}≤q<α+ϵ

Also if x < 1 x<1 , then x p > x α > x q x^p>x^α>x^q , but x 1 < 0 x-1<0 , thus
x p 1 x 1 < x α 1 x 1 < x q 1 x 1 \frac{x^p-1}{x-1}<\frac{x^α-1}{x-1}<\frac{x^q-1}{x-1}
and similarly we have
α ϵ < p lim x 1 ; x ( 1 , ) x α 1 x 1 q < α + ϵ α-ϵ<p≤\lim_{x→1;x∈(1,∞) }⁡\frac{x^α-1}{x-1}≤q<α+ϵ
So we can conclude
α ϵ < lim x 1 ; x ( 0 , ) { 1 } x α 1 x 1 < α + ϵ lim x 1 ; x ( 0 , ) { 1 } x α 1 x 1 = α α-ϵ<\lim_{x→1;x∈(0,∞)-\{1\} }⁡⁡\frac{x^α-1}{x-1}<α+ϵ ⇒\lim_{x→1;x∈(0,∞)-\{1\} }⁡⁡\frac{x^α-1}{x-1}=α

( b ) For c ( 0 , ) ∀c∈(0,∞) , by Theorem 10.1.13 g ( x ) = ( x / c ) α g(x)=(x/c)^α is differentiable on ( 0 , ) (0,∞) , thus
lim x / c 1 ; x / c ( 0 , ) { 1 } ( x / c ) α 1 x / c 1 = α lim x c ; x ( 0 , ) { c } ( x α c α ) / c α ( x c ) / c = α lim x c ; x ( 0 , ) { c } x α c α x c = α c α 1 = lim x c ; x ( 0 , ) { c } f ( x ) f ( c ) x c = f ( c ) \begin{aligned}\lim_{x/c→1;x/c∈(0,∞)-\{1\} }\frac{(x/c)^α-1}{x/c-1}=α& ⇒ \lim_{x→c;x∈(0,∞)-\{c\} }\frac{(x^α-c^α)/c^α}{(x-c)/c}=α \\&⇒ \lim_{x→c;x∈(0,∞)-\{c\} }\frac{x^α-c^α}{x-c}=αc^{α-1}\\&=\lim_{x→c;x∈(0,∞)-\{c\} }\frac{f(x)-f(c)}{x-c}\\&=f' (c)\end{aligned}
Thus we can conclude f f is differentiable on ( 0 , ) (0,∞) , and f ( x ) = α x α 1 f' (x)=αx^{α-1} .

发布了77 篇原创文章 · 获赞 14 · 访问量 2811

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/102742837