陶哲轩实分析(上)9.3及习题-Analysis I 9.3

9.3的题目叫limiting values of functions,在Analysis II里有一节同样题目的章节。这一节限制在R上讨论,函数的极限值是后续讨论continuity的基础,函数极限可以和数列极限等价起来,函数极限是唯一的,满足极限算律,极限也是局部的性质(即只和某一点附近的情况有关)

Exercise 9.3.1

(a) implies (b):
If f f converges to L L at x 0 x_0 in E E , then ϵ > 0 , δ > 0 , s . t . x x 0 < δ f ( x ) L < ϵ ∀ϵ>0,∃δ>0, s.t. |x-x_0 |<δ ⇒|f(x)-L|<ϵ . Let ( a n ) n = 0 E (a_n )_{n=0}^∞∈E such that a n x 0 a_n→x_0 , then N N , s . t . a n x 0 < δ , n > N ∃N∈\mathbf N, s.t. |a_n-x_0 |<δ,∀n>N , so if n > N n>N , we have f ( a n ) L < ϵ |f(a_n )-L|<ϵ , so ( f ( a n ) ) n = 0 L (f(a_n ))_{n=0}^∞→L .
(b) implies (a):
Assume f f doesn’t converge to L L at x 0 x_0 in E E , then due to axiom of choice, there’s a ϵ 0 > 0 ϵ_0>0 , such that for N N , x n E , s . t . ( x n x 0 < δ ) ( f ( x n ) L ϵ ) ∀N∈\mathbf N,∃x_n∈E, s.t. (|x_n-x_0 |<δ)∧(|f(x_n )-L|≥ϵ) , the sequence ( x n ) n = 0 E (x_n )_{n=0}^∞∈E , but ( f ( x n ) ) n = 0 L (f(x_n ))_{n=0}^∞↛L , a contradiction.

Exercise 9.3.2

Since x 0 x_0 is an adherence point of E E , we can find ( a n ) n = 0 E (a_n )_{n=0}^∞∈E such that a n x 0 a_n→x_0 , then we have ( f ( a n ) ) n = 0 L (f(a_n ))_{n=0}^∞→L and ( g ( a n ) ) n = 0 M (g(a_n ))_{n=0}^∞→M , by Proposition 9.3.9. Thus:
( ( f g ) ( a n ) ) n = 0 L M ( f ( a n ) ) n = 0 ( g ( a n ) ) n = 0 L M ((f-g)(a_n ))_{n=0}^∞→L-M ⇒ (f(a_n ))_{n=0}^∞-(g(a_n ))_{n=0}^∞→L-M by Theorem 6.1.19 (d)
( ( max ( f , g ) ) ( a n ) ) n = 0 max ( L , M ) max ( ( f ( a n ) ) n = 0 , ( g ( a n ) ) n = 0 ) max ( L , M ) ((\max⁡(f,g) )(a_n ))_{n=0}^∞→\max(L,M) ⇒\max⁡((f(a_n ))_{n=0}^∞,(g(a_n ))_{n=0}^∞ )→\max(L,M) by Theorem 6.1.19 (g)
( ( min ( f , g ) ) ( a n ) ) n = 0 min ( L , M ) min ( ( f ( a n ) ) n = 0 , ( g ( a n ) ) n = 0 ) min ( L , M ) ((\min⁡(f,g) )(a_n ))_{n=0}^∞→\min(L,M) ⇒\min⁡((f(a_n ))_{n=0}^∞,(g(a_n ))_{n=0}^∞ )→\min⁡(L,M) by Theorem 6.1.19 (h)
( ( f g ) ( a n ) ) n = 0 L M ( f ( a n ) ) n = 0 ( g ( a n ) ) n = 0 L M ((fg)(a_n ))_{n=0}^∞→LM ⇒ (f(a_n ))_{n=0}^∞ (g(a_n ))_{n=0}^∞→LM by Theorem 6.1.19 (b)
( ( f / g ) ( a n ) ) n = 0 L / M ( f ( a n ) ) n = 0 / ( g ( a n ) ) n = 0 L / M ((f/g)(a_n ))_{n=0}^∞→L/M ⇒ (f(a_n ))_{n=0}^∞/(g(a_n ))_{n=0}^∞→L/M by Theorem 6.1.19 (f)
Then all functions have asserted limits at x 0 x_0 in E E since the above conclusions are true for arbitrary ( a n ) n = 0 E (a_n )_{n=0}^∞∈E such that a n x 0 a_n→x_0 , and thus by Proposition 9.3.9.

Exercise 9.3.3

lim x x 0 ; x E f ( x ) = L \lim_{x→x_0;x∈E}⁡f(x)=L iff
ϵ > 0 , δ > 0 , s . t . ( x E ) ( x x 0 < δ ) f ( x ) L < ϵ ∀ϵ>0,∃δ'>0,s.t.(x∈E)∧(|x-x_0 |<δ' )⇒|f(x)-L|<ϵ
iff
ϵ > 0 , δ > 0 , s . t . ( x E ) ( x x 0 < min ( δ , δ ) δ ) f ( x ) L < ϵ ∀ϵ>0,∃δ'>0,s.t.(x∈E)∧(|x-x_0 |<\min⁡(δ,δ' )≤δ' )⇒|f(x)-L|<ϵ
iff
ϵ > 0 , δ > 0 , s . t . ( x E ( x 0 δ , x 0 + δ ) ) ( x x 0 < δ ) f ( x ) L < ϵ ∀ϵ>0,∃δ'>0,s.t.(x∈E∩(x_0-δ,x_0+δ))∧(|x-x_0 |<δ' )⇒|f(x)-L|<ϵ
iff
lim x x 0 ; x E f ( x ) = L \lim_{x→x_0;x∈E}⁡f(x)=L

Exercise 9.3.4

A definition for limit superior: we say lim sup x x 0 ; x E f ( x ) = M \limsup_{x→x_0;x∈E}⁡f(x)=M iff for ϵ > 0 , δ > 0 ∀ϵ>0,∃δ>0 , s.t.
( ( x x 0 < δ ) ( f ( x ) < M + ϵ ) ) ( x ( x 0 δ , x 0 + δ ) , f ( x ) > M ϵ ) \Big((|x-x_0 |<δ)⇒(f(x)<M+ϵ)\Big)∧\Big(∃x'∈(x_0-δ,x_0+δ),f(x' )>M-ϵ\Big)
A definition for limit inferior: we say lim inf x x 0 ; x E f ( x ) = m \liminf_{x→x_0;x∈E}f(x)=m iff for ϵ > 0 , δ > 0 ∀ϵ>0,∃δ>0 , s.t.
( ( x x 0 < δ ) ( f ( x ) > m ϵ ) ) ( x ( x 0 δ , x 0 + δ ) , f ( x ) < m + ϵ ) \Big((|x-x_0 |<δ)⇒(f(x)>m-ϵ)\Big)∧\Big(∃x'∈(x_0-δ,x_0+δ),f(x' )<m+ϵ\Big)

An analogue of Proposition 9.3.9 (limsup case):
Let E X R , f : X R , x 0 E E⊆X⊆R, f:X→R, x_0∈\overline E , then the following two statements are logically equivalent:
(a) lim sup x x 0 ; x E f ( x ) = M \limsup_{x→x_0;x∈E}f(x)=M
(b) For any sequence ( a n ) n = 0 E , a n x 0 (a_n )_{n=0}^∞∈E,a_n→x_0 , we have lim sup n f ( a n ) M \limsup_{n→∞}f(a_n)≤M , and there is a sequence ( b n ) n = 0 E , b n x 0 (b_n )_{n=0}^∞∈E, b_n→x_0 , such that lim n f ( b n ) = M \lim_{n→∞}f(b_n)=M .

An analogue of Proposition 9.3.9 (liminf case):
Let E X R , f : X R , x 0 E E⊆X⊆R, f:X→R, x_0∈\overline E , then the following two statements are logically equivalent:
(a) lim inf x x 0 ; x E f ( x ) = m \liminf_{x→x_0;x∈E}f(x)=m
(b) For any sequence ( a n ) n = 0 E , a n x 0 (a_n )_{n=0}^∞∈E,a_n→x_0 , we have lim i n f n f ( a n ) m \lim⁡inf_{n→∞}f(a_n)≥m , and there is a sequence ( b n ) n = 0 E , b n x 0 (b_n )_{n=0}^∞∈E, b_n→x_0 , such that lim n f ( b n ) = m \lim_{n→∞}f(b_n)=m .

Proof: I only prove the case for limit superior.
(a) implies (b):
If lim sup x x 0 ; x E f ( x ) = M \limsup_{x→x_0;x∈E}f(x)=M , then on one hand, ϵ > 0 ∀ϵ>0 , the set
A n = { x E : x x 0 < 1 / n  and  M ϵ < f ( x ) < M + ϵ } A_n=\{x∈E: |x-x_0 |<1/n\text{ and }M-ϵ<f(x)<M+ϵ\}
is non-empty, use axiom of choice to find a b n A n b_n∈A_n and form a sequence ( a n ) n = 0 E (a_n )_{n=0}^∞∈E , it’s easy to see that b n x 0 b_n→x_0 and lim n f ( b n ) = M \lim_{n→∞}f(b_n)=M .
On the other hand, assume ( a n ) n = 0 E , a n x 0 ∃(a_n )_{n=0}^∞∈E, a_n→x_0 , and lim sup n f ( a n ) = M > M \limsup_{n→∞}f(a_n)=M'>M , then let
ϵ = ( M M ) / 2 > 0 ϵ=(M'-M)/2>0
We can first have a δ > 0 δ>0 , s.t. ( x x 0 < δ ) ( f ( x ) < M + ϵ ) (|x-x_0 |<δ)⇒(f(x)<M+ϵ) , and there’s a N N N∈\mathbf N , s.t.
a n x 0 < δ , n > N |a_n-x_0 |<δ,\quad ∀n>N
Which means
f ( a n ) < M + ϵ , n > N f(a_n )<M+ϵ,\quad ∀n>N
But since lim sup n f ( a n ) = M \limsup_{n→∞}f(a_n)=M' , we can find a K > N K>N , s.t. KaTeX parse error: Expected group after '^' at position 10: f(a_K )>M^̲'-ϵ, now we have
f ( a K ) < M + ϵ = M ϵ < f ( a K ) f(a_K )<M+ϵ=M'-ϵ<f(a_K )
This is a contradiction.
(b) implies (a):
Assume the first condition is wrong, then we shall find a ϵ 0 > 0 ϵ_0>0 , s.t. N N ∀N∈\mathbf N , the set
A n = { x E : x x 0 < 1 / n  and  f ( x ) M + ϵ 0 } A_n=\{x∈E:|x-x_0 |<1/n\text{ and }f(x)≥M+ϵ_0\}
is non-empty, choose a n A n a_n∈A_n by axiom of choice, then a n x 0 a_n→x_0 as n n→∞ , and
M < M + ϵ 0 inf ( a n ) lim sup n f ( a n ) M M<M+ϵ_0≤\inf⁡(a_n )≤\limsup_{n→∞}⁡f(a_n )≤M
This is a contradiction.
Assume the second condition is wrong, then x ( x 0 δ , x 0 + δ ) , f ( x ) M ϵ 0 ∀x∈(x_0-δ,x_0+δ),f(x)≤M-ϵ_0 for some ϵ 0 > 0 ϵ_0>0 and any δ > 0 δ>0 , then any sequence ( a n ) n = 0 E (a_n )_{n=0}^∞∈E such that a n x 0 a_n→x_0 and f ( a n ) f(a_n ) converges would have lim n f ( a n ) M ϵ 0 < M \lim_{n→∞}f(a_n)≤M-ϵ_0<M , this contradicts the existence of ( b n ) n = 0 (b_n )_{n=0}^∞ .

Exercise 9.3.5

Let ( a n ) n = 0 E (a_n )_{n=0}^∞∈E such that a n x 0 a_n→x_0 , by Proposition 9.3.9, we know that both ( f ( a n ) ) n = 0 (f(a_n ))_{n=0}^∞ and ( h ( a n ) ) n = 0 (h(a_n ))_{n=0}^∞ converge to L L , thus for ϵ > 0 ∀ϵ>0 , there’s N 1 , N 2 N N_1,N_2∈\mathbf N , such that
f ( a n ) L < ϵ , n > N 1 h ( a n ) L < ϵ , n > N 2 |f(a_n )-L|<ϵ,\quad∀n>N_1\\ |h(a_n )-L|<ϵ,\quad∀n>N_2
Let N = max ( N 1 , N 2 ) N=\max(N_1,N_2) , then we shall have
L ϵ < f ( a n ) g ( a n ) h ( a n ) < L + ϵ , n > N L-ϵ<f(a_n )≤g(a_n )≤h(a_n )<L+ϵ,\quad∀n>N
This means ( g ( a n ) ) n = 0 (g(a_n ))_{n=0}^∞ converges to L L , this is true for arbitrary sequence ( a n ) n = 0 E (a_n )_{n=0}^∞∈E which satisfies a n x 0 a_n→x_0 , so we can conclude lim x x 0 ; x E g ( x ) = L \lim_{x→x_0;x∈E}⁡g(x)=L .

发布了77 篇原创文章 · 获赞 14 · 访问量 2822

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/102670443
9.3