陶哲轩实分析(上)11.4及习题-Analysis I 11.4

Exercise 11.4.1

Since f f and g g are both Riemann integrable, we have
I f = I f , I g = I g \overline{\int}_I f=\underline{\int}_I f,\quad \overline{\int}_I g=\underline{\int}_I g
So for ϵ > 0 ∀ϵ>0 , we have piecewise constant function f \overline{f} majorizes f f , f \underline{f} minorizes f f , g \overline{g} majorizes g g , g \underline{g} minorizes g g , such that
I f ϵ < I f I f I f < I f + ϵ , I g ϵ < I g I g I g < I g + ϵ {\int}_I^ f-ϵ<{\int}_I \underline{f}≤{\int}_I f≤{\int}_I \overline{f}<{\int}_I f+ϵ,\\{\int}_I g-ϵ<{\int}_I \underline{g}≤{\int}_I g≤{\int}_I \overline{g}<{\int}_I g+ϵ
( a ) It’s easy to prove that f + g \overline{f}+\overline{g} majorizes f + g f+g and f + g \underline{f}+\underline{g} minorizes f + g f+g , so we have
I ( f + g ) I ( f + g ) I ( f + g ) I ( f + g ) {\int}_I (\underline{f}+\underline{g}) ≤\underline{\int}_I (f+g) ≤\overline{\int}_I (f+g)≤{\int}_I (\overline{f}+\overline{g})
Use Theorem 11.2.16 we have
I ( f + g ) = I f + I g > I f + I g 2 ϵ I ( f + g ) = I f + I g < I f + I g + 2 ϵ {\int}_I (\underline{f}+\underline{g}) ={\int}_I \underline{f}+{\int}_I \underline{g}>{\int}_I f+{\int}_I g-2ϵ \\ {\int}_I (\overline{f}+\overline{g}) ={\int}_I \overline{f}+{\int}_I \overline{g}<{\int}_I f+{\int}_I g+2ϵ
Thus
I ( f + g ) I ( f + g ) I ( f + g ) I ( f + g ) < 4 ϵ \overline{\int}_I (f+g)-\underline{\int}_I (f+g)≤{\int}_I (\overline{f}+\overline{g}) -{\int}_I (\underline{f}+\underline{g}) <4ϵ
So f + g f+g is Riemann integrable, and
I f + I g 2 ϵ < I ( f + g ) I ( f + g ) I ( f + g ) < I f + I g + 2 ϵ {\int}_I f+{\int}_I g-2ϵ<{\int}_I (\underline{f}+\underline{g}) ≤{\int}_I (f+g) ≤{\int}_I (\overline{f}+\overline{g}) <{\int}_If+{\int}_Ig+2ϵ
Which shows I ( f + g ) = I f + I g {\int}_I (f+g) ={\int}_I f+{\int}_I g .
( b ) First suppose c > 0 c>0 , then c f c\overline{f} majorizes c f cf , c f c\underline{f} minorizes c f cf , so we have
I ( c f ) I ( c f ) I ( c f ) I ( c f ) {\int}_I (c\underline{f}) ≤\underline{\int}_I (cf) ≤\overline{\int}_I (cf)≤{\int}_I(c\overline{f})
Use Theorem 11.2.16 we have
I ( c f ) = c I f > c I f c ϵ , I ( c f ) = c I f < c I f + c ϵ {\int}_I(c\underline{f}) =c{\int}_I \underline{f}>c{\int}_I f-cϵ,\quad {\int}_I (c\overline{f}) =c{\int}_I \overline{f}<c{\int}_I f+cϵ
Thus
c I f c ϵ < I ( c f ) I ( c f ) I ( c f ) I ( c f ) < c I f + c ϵ c{\int}_I f-cϵ<{\int}_I (c\underline{f}) ≤\underline{\int}_I (cf) ≤\overline{\int}_I (cf)≤{\int}_I (c\overline{f}) <c{\int}_I f+cϵ
Which shows I ( c f ) = c I f {\int}_I (cf) =c{\int}_I f .
Now if c = 0 c=0 , then c f = 0 cf=0 , which is a piecewise constant function on I I , thus
I ( c f ) = p . c . I ( c f ) = p . c . I ( 0 ) = 0 = 0 I f {\int}_I (cf) =p.c.{\int}_I (cf) =p.c.{\int}_I (0) =0=0\cdot {\int}_I f
Now suppose c = 1 c=-1 , then f -\overline{f} minorizes f -f , f -\underline{f} majorizes f -f , so we have
I ( f ) I ( f ) I ( f ) I ( f ) {\int}_I (-\overline{f}) ≤\underline{\int}_I (-f) ≤\overline{\int}_I (-f)≤{\int}_I (-\underline{f})
Use Theorem 11.2.16 we have
I ( f ) = I f > I f ϵ , I ( f ) = I f < I f + ϵ {\int}_I (-\overline{f}) =-{\int}_I \overline{f}>-{\int}_I f-ϵ,\quad {\int}_I (-\underline{f}) =-{\int}_I \underline{f}<-{\int}_I f+ϵ
Thus
I f ϵ < I f I ( f ) I ( f ) I f < I f + ϵ -{\int}_I f-ϵ<-{\int}_I \overline{f}≤\underline{\int}_I (-f) ≤\overline{\int}_I (-f)≤-{\int}_I \underline{f}<-{\int}_I f+ϵ
Which shows I ( f ) = I f {\int}_I (-f) =-{\int}_I f .
Finally for any c < 0 c<0 , we have c = ( 1 ) ( c ) c=(-1)(-c) and c f = ( 1 ) ( c f ) , c > 0 cf=(-1)(-cf),-c>0 , so use the result for c = 1 c=-1 and c > 0 c>0 , we have
I ( c f ) = I ( 1 ) ( c f ) = I ( c f ) = ( c ) I f = c I f {\int}_I (cf) ={\int}_I (-1)(-cf) =-{\int}_I (-cf) =-(-c) {\int}_I f=c{\int}_I f
( c ) Use (a) and (b) we could have
I ( f g ) = I ( f + ( g ) ) = I f + I ( g ) = I f I g {\int}_I(f-g) ={\int}_I (f+(-g)) ={\int}_I f+{\int}_I(-g)={\int}_I f-{\int}_I g
( d ) The constant function h ( x ) = 0 h(x)=0 minorizes f f , thus
I f I ( f ) I h = I 0 h = 0 I h = 0 {\int}_I f≥\underline{\int}_I (f)≥{\int}_I h={\int}_I0\cdot h=0{\int}_I h=0
( e ) The function f ( x ) g ( x ) 0 , x I f(x)-g(x)≥0,∀x∈I , thus use ( d ) and ( c )
I f I g = I ( f g ) 0 I f I g {\int}_I f-{\int}_I g={\int}_I (f-g) ≥0 ⇒ {\int}_I f≥{\int}_I g
( f ) In this case, we can use the piecewise constant function integral formula:
I f = p . c . I f = J P c J J = c J P J = c I {\int}_I f=p.c.{\int}_I f=∑_{J∈P}c_J |J| =c∑_{J∈P}|J| =c|I|
( g ) We can define F \overline{F} and F \underline{F} which are piecewise and majorizes/minorizes F F as:
F ( x ) = { f ( x ) , x I 0 , x I , F ( x ) = { f ( x ) , x I 0 , x I \overline{F} (x)=\begin{cases}\overline{f} (x),&x∈I\\0,&x∉I\end{cases},\quad \underline{F} (x)=\begin{cases}\underline{f} (x),&x∈I\\0,&x∉I\end{cases}
Then use Theorem 11.2.16 we have
I f ϵ < I f = J F J F J F J F = I f < I f + ϵ {\int}_I f-ϵ<{\int}_I \underline{f}={\int}_J \underline{F}≤\underline{\int}_J F≤\overline{\int}_J F≤{\int}_J \overline{F}={\int}_I \overline{f}<{\int}_I f+ϵ
which shows J F = I f {\int}_J F={\int}_I f .
( h ) Use Theorem 11.2.16 (h) we have
I f = J f J + K f K , I f = J f J + K f K {\int}_I \overline{f}={\int}_J \overline{f}|_J +{\int}_K \overline{f}|_K ,{\int}_I \underline{f}={\int}_J \underline{f}|_J +{\int}_K \underline{f}|_K
Thus
I f I f = ( J f J J f J ) + ( K f K K f K ) < 2 ϵ {\int}_I \overline{f}-{\int}_I \underline{f}=({\int}_J\overline{f}|_J -{\int}_J \underline{f}|_J )+({\int}_K\overline{f}|_K -{\int}_K\underline{f}|_K )<2ϵ
Since we have f f f \overline{f}≥f≥\underline{f} on I , J , K I,J,K , this means
J f J J f J 0 , K f K K f K 0 {\int}_J\overline{f}|_J -{\int}_J\underline{f}|_J ≥0,\quad {\int}_K\overline{f}|_K -{\int}_K\underline{f}|_K ≥0
Thus we have
J f J J f J < 2 ϵ , K f K K f K < 2 ϵ {\int}_J\overline{f}|_J -{\int}_J\underline{f}|_J <2ϵ,{\int}_K\overline{f}|_K -{\int}_K\underline{f}|_K <2ϵ
Since f J \overline{f}|_J majorizes f J f|_J and f J \underline{f}|_J minorizes f J f|_J , we can say f J f|_J is Riemann integrable on J J , by the same logic f K f|_K is Riemann integrable on K K . We let
F ( x ) = { f ( x ) , x J 0 , x J , G ( x ) = { f ( x ) , x K 0 , x K F(x)=\begin{cases}f(x),&x∈J\\0,&x∉J\end{cases},\quad G(x)=\begin{cases}f(x),&x∈K\\0,&x∉K\end{cases}
Then f ( x ) = F ( x ) + G ( x ) f(x)=F(x)+G(x) , use (a) and (g) we have
I f = I F + I G = J f J + K f K {\int}_I f={\int}_I F+{\int}_I G={\int}_Jf|_J +{\int}_Kf|_K

Exercise 11.4.2

Assume c [ a , b ] , f ( c ) > 0 ∃c∈[a,b],f(c)>0 , since f f is continuous, let ϵ = f ( c ) / 2 ϵ=f(c)/2 , then δ > 0 ∃δ>0 , s.t.
f ( x ) f ( c ) < ϵ = f ( c ) / 2 , x [ a , b ] ( c δ , c + δ ) |f(x)-f(c)|<ϵ=f(c)/2,\quad ∀x∈[a,b]∩(c-δ,c+δ)
Since the length of [ a , b ] ( c δ , c + δ ) [a,b]∩(c-δ,c+δ) is longer than δ / 2 δ/2 , and we have
f ( x ) > f ( c ) / 2 , x [ a , b ] ( c δ , c + δ ) f(x)>f(c)/2,\quad ∀x∈[a,b]∩(c-δ,c+δ)
We can define
g ( x ) = { f ( c ) / 2 , x [ a , b ] ( c δ , c + δ ) f ( x ) , x [ a , b ] , x ( c δ , c + δ ) g(x)=\begin{cases}f(c)/2,&x∈[a,b]∩(c-δ,c+δ)\\f(x),&x∈[a,b],x∉(c-δ,c+δ)\end{cases}
Then we can say g g minorizes f f on [ a , b ] [a,b] , since f f is Riemann integrable on [ a , b ] [a,b] , and { [ a , b ] ( c δ , c + δ ) , [ a , b ] \ ( c δ , c + δ ) } \{[a,b]∩(c-δ,c+δ),[a,b]\backslash(c-δ,c+δ)\} is a partition of [a,b], we can say the function f [ a , b ] \ ( c δ , c + δ ) f|_{[a,b]\backslash(c-δ,c+δ)} is Riemann integrable by Theorem 11.4.1(h), and constant function is Riemann integrable by Theorem 11.4.1(f), thus g g is integrable by repeated use of Theorem 11.4.1(g). Now use Theorem 11.4.1(h), (d),(f) we have
0 = [ a , b ] f [ a , b ] g = [ a , b ] ( c δ , c + δ ) ( f ( c ) 2 ) + [ a , b ] \ ( c δ , c + δ ) f f ( c ) 2 δ 2 = δ f ( c ) 4 > 0 0=\int_{[a,b]}f≥\int_{[a,b]}g=\int_{[a,b]∩(c-δ,c+δ)}\left(\frac{f(c)}{2}\right) +∫_{[a,b]\backslash(c-δ,c+δ)} f≥\frac{f(c)}{2} \left|\frac{δ}{2}\right|=\frac{δf(c)}{4}>0
This is a contradiction.

Exercise 11.4.3

Repeated use of Theorem 11.4.1(h), we can get
I f = J P J f J = J P J f ∫_If=∑_{J∈P}∫_Jf|_J =\sum_{J∈P}∫_Jf

Exercise 11.4.4

It’s easy to see from Theorem 11.4.1 that if f is Riemann integrable, then so is f –f .
As min ( f , g ) = max ( f , g ) \min⁡(f,g)=-\max⁡(-f,-g) , we settled Theorem 11.4.3.
For Theorem 11.4.5, we already have f + g + f_+ g_+ Riemann integrable if f f and g g are integrable, notice that
f + g = f + ( g ) + f g + = ( f ) + g + f g = ( f ) + ( g ) + f_+ g_-=f_+ (-g)_+ \\ f_- g_+=(-f)_+ g_+ \\ f_- g_-=(-f)_+ (-g)_+
and both f –f and g –g are Riemann integrable, the conclusion follows.

发布了77 篇原创文章 · 获赞 14 · 访问量 2794

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/103904206