陶哲轩实分析(上)9.4及习题-Analysis I 9.4

函数极限性。简单而言,上一节定义的limiting values of functions如果等于函数在这一点的值,就是函数连续。连续性用ε-δ定义和序列定义是等价的,可以证明很多函数都是连续的

Exercise 9.4.1

( a ) ⇔ ( b ):
( f  is continuous at  x 0 ) ( lim x x 0 ; x X f ( x ) = f ( x 0 ) ) ( ( ( a n ) n = 0 E , lim n a n = x 0 ) lim n f ( a n ) = f ( x 0 ) ) \begin{aligned}(f\text{ is continuous at }x_0) &⇔ (\lim_{x→x_0;x∈X}f(x)=f(x_0 )) \\&⇔((∀(a_n )_{n=0}^∞∈E,\lim_{n→∞}a_n=x_0 )⇒\lim_{n→∞}f(a_n)=f(x_0))\end{aligned}
( a ) implies ( c ):
Get directly from the definition of lim x x 0 ; x X f ( x ) = f ( x 0 ) \lim_{x→x_0;x∈X}f(x)=f(x_0 ) .
( c ) implies ( d ):
Obviously true.
( d ) implies ( a ):
Let ϵ > 0 ∀ϵ>0 , then due to (d), δ > 0 ∃δ'>0 , s.t. f ( x ) f ( x 0 ) ϵ / 2 |f(x)-f(x_0)|≤ϵ/2 for every x X x∈X with x x 0 δ |x-x_0 |≤δ' , so if we let δ = δ δ=δ' , then x x 0 < δ |x-x_0 |<δ means x x 0 δ |x-x_0 |≤δ' , and
f ( x ) f ( x 0 ) ϵ / 2 f ( x ) f ( x 0 ) < ϵ lim x x 0 ; x X f ( x ) = f ( x 0 ) |f(x)-f(x_0)|≤ϵ/2 ⇒|f(x)-f(x_0 )|<ϵ ⇒ \lim_{x→x_0;x∈X}f(x)=f(x_0 )

Exercise 9.4.2

First for every x 0 X x_0∈X , we have
lim x x 0 ; x X f ( x ) = lim x x 0 ; x X c = c = f ( x 0 ) \lim_{x→x_0;x∈X}f(x)=\lim_{x→x_0;x∈X}c=c=f(x_0 )
So f f is continuous on X X .
Next, for every x 0 X x_0∈X , we have
lim x x 0 ; x X g ( x ) = lim x x 0 ; x X x = x 0 = g ( x 0 ) \lim_{x→x_0;x∈X}g(x)=\lim_{x→x_0;x∈X}⁡x=x_0=g(x_0 )
So g g is continuous on X X .

Exercise 9.4.3

Choose x 0 R ∀x_0∈\mathbf R , we prove f ( x ) = a x f(x)=a^x is continuous at x 0 x_0 . As a > 0 a>0 , we have a x 0 > 0 a^{x_0 }>0 .
ϵ > 0 ∀ϵ>0 , from Lemma 6.5.3 we can find a N N N∈\mathbf N , s.t. a 1 / n 1 < ϵ / a x 0 |a^{1/n}-1|<ϵ/a^{x_0} for all n > N n>N . Since
a x a x 0 = a x 0 a x x 0 1 |a^x-a^{x_0} |=a^{x_0 } |a^{x-x_0}-1|
We choose δ = 1 / ( N + 1 ) δ'=1/(N+1) , then x R ∀x∈\mathbf R with 0 x x 0 < δ 0≤x-x_0<δ' , we can find a k > N k>N , s.t.
1 / ( k + 1 ) < x x 0 < 1 / k 1/(k+1)<x-x_0<1/k
Thus a x x 0 1 |a^{x-x_0}-1| is between a 1 / k 1 |a^{1/k}-1| and a 1 / k + 1 1 |a^{1/k+1}-1| , which means
a x x 0 1 < ϵ / a x 0 a x a x 0 = a x 0 a x x 0 1 < ϵ |a^{x-x_0}-1|<ϵ/a^{x_0 } ⇒ |a^x-a^{x_0 } |=a^{x_0} |a^{x-x_0}-1|<ϵ
Also, from Lemma 6.5.3 we can find a N N N'∈\mathbf N , s.t. a 1 / n 1 < ϵ / a x 0 |a^{-1/n}-1|<ϵ/a^{x_0} for all n > N n>N' . Since
a x a x 0 = a x 0 a x x 0 1 |a^x-a^{x_0} |=a^{x_0} |a^{x-x_0}-1|
We choose δ = 1 / ( N + 1 ) δ''=1/(N'+1) , then x R ∀x∈\mathbf R with 0 < x 0 x < δ 0<x_0-x<δ'' , we can find a k > N k>N' , s.t.
1 / ( k + 1 ) < x 0 x < 1 / k 1/(k+1)<x_0-x<1/k
Thus a x x 0 1 |a^{x-x_0}-1| is between a 1 / k 1 |a^{-1/k}-1| and a 1 / k + 1 1 |a^{-1/k+1}-1| , which means
a x x 0 1 < ϵ / a x 0 a x a x 0 = a x 0 a x x 0 1 < ϵ |a^{x-x_0}-1|<ϵ/a^{x_0} ⇒ |a^x-a^{x_0} |=a^{x_0} |a^{x-x_0}-1|<ϵ
Now let δ = min ( δ , δ ) δ=\min⁡(δ',δ'') , then if x x 0 < δ , a x a x 0 < ϵ |x-x_0 |<δ, |a^x-a^{x_0} |<ϵ , completing the proof.

Exercise 9.4.4

Since lim x 1 x = 1 \lim_{x→1}⁡x=1 , we have lim x 1 x n = ( lim x 1 x ) n = 1 \lim_{x→1}x^n=(\lim_{x→1}⁡x )^n=1 for all natural numbers n n , and since when x 1 , 1 / x 1 x→1,1/x→1 , so lim x 1 x n = 1 , n N \lim_{x→1}x^{-n}=1,n∈\mathbf N . Use prove by contradiction we can show that lim x 1 x 1 / n = 1 , n N + \lim_{x→1}x^{1/n}=1, ∀n∈\mathbf N^+ , thus it’s able to conclude lim x 1 x q = 1 , q Q \lim_{x→1}⁡x^q=1,∀q∈\mathbf Q .
Now for p R , q 1 , q 2 , s . t . q 1 p < q 2 ∀p∈\mathbf R,∃q_1,q_2, s.t. q_1≤p<q_2 , so x p x^p is between x q 1 x^{q_1} and x q 2 x^{q_2} , which means
lim x 1 x p = 1 , p R \lim_{x→1}⁡x^p=1,\quad ∀p∈\mathbf R
Now for x 0 ( 0 , + ) x_0∈(0,+∞) , then x 0 p > 0 x_0^p>0 . For ϵ > 0 , δ > 0 ∀ϵ>0,∃δ>0 , s.t. for any x ( 0 , + ) x∈(0,+∞) with x x 0 < δ |x-x_0 |<δ , we have ( x / x 0 ) p 1 < ϵ / x 0 p |(x/x_0 )^p-1|<ϵ/x_0^p , thus
x p x 0 p = x 0 p ( x / x 0 ) p 1 < ϵ |x^p-x_0^p |=x_0^p |(x/x_0 )^p-1|<ϵ

Exercise 9.4.5

Let ϵ > 0 ∀ϵ>0 , as g g is continuous at f ( x 0 ) f(x_0 ) , we can find δ 1 > 0 δ_1>0 , s.t. y Y , y f ( x 0 ) < δ 1 ∀y∈Y,|y-f(x_0 )|<δ_1 , we can have g ( y ) g ( f ( x 0 ) ) < ϵ |g(y)-g\big(f(x_0 )\big)|<ϵ . For this δ 1 > 0 δ_1>0 we can find δ > 0 δ>0 , s.t. x X , x x 0 < δ ∀x∈X,|x-x_0 |<δ , we can have f ( x ) f ( x 0 ) < δ 1 |f(x)-f(x_0)|<δ_1 , thus if x x 0 < δ |x-x_0 |<δ , we get
g ( f ( x ) ) g ( f ( x 0 ) ) < ϵ ( g f ) ( x ) ( g f ) ( x 0 ) < ϵ |g(f(x))-g(f(x_0 ))|<ϵ ⇒|(g∘f)(x)-(g∘f)(x_0)|<ϵ

Exercise 9.4.6

Let y 0 Y y_0∈Y , so y 0 X y_0∈X , and f f is continuous at y 0 y_0 , so ϵ > 0 , δ > 0 ∀ϵ>0,∃δ>0 , s.t. x X , x y 0 < δ ∀x∈X,|x-y_0 |<δ , we can have f ( x ) f ( y 0 ) < ϵ |f(x)-f(y_0)|<ϵ .
Use the result above, if y Y , y y 0 < δ y∈Y,|y-y_0 |<δ , we can have f ( y ) f ( y 0 ) < ϵ |f(y)-f(y_0)|<ϵ , this proves f Y : Y R f|_Y:Y→\mathbf R is continuous at y 0 y_0 , since y 0 y_0 is arbitrarily chosen, f Y f|_Y is continuous.

Exercise 9.4.7

By Proposition 9.4.9, the function x i x^i is continuous for each 0 i n 0≤i≤n , thus the function c i x i c_i x^i is continuous for each 0 i n 0≤i≤n , at last their sums is continuous.

发布了77 篇原创文章 · 获赞 14 · 访问量 2821

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/102675880
9.4