陶哲轩实分析(上)11.2及习题-Analysis I 11.2

这节介绍逐段常值函数。

Exercise 11.2.1

We choose K P ∀K∈\mathbf P' , then J P , K J ∃J∈\mathbf P,K⊆J , we can know f J f|_J is constant, thus f f is constant on K K , this means f f is piecewise constant with respect to P \mathbf P' .

Exercise 11.2.2

By the condition given, there exists partitions P \mathbf P and P \mathbf P' , s.t. f f is piecewise constant with respect to P \mathbf P , and g g is piecewise constant with respect to P \mathbf P' .
Now we consider any element K P # P K∈\mathbf P\#\mathbf P' , by Lemma 11.2.7, f f and g g are piecewise constant with respect to P # P \mathbf P\#\mathbf P' , thus we can have c , d c,d , s.t. f ( x ) = c , g ( x ) = d , x K f(x)=c,g(x)=d,∀x∈K , this means:
( f + g ) ( x ) = f ( x ) + g ( x ) = c + d , x K ( f g ) ( x ) = f ( x ) g ( x ) = c d , x K max ( f , g ) ( x ) = max ( f ( x ) , g ( x ) ) = max ( c , d ) , x K ( f g ) ( x ) = f ( x ) g ( x ) = c d , x K (f+g)(x)=f(x)+g(x)=c+d,\quad ∀x∈K \\ (f-g)(x)=f(x)-g(x)=c-d,\quad ∀x∈K \\ \max⁡(f,g) (x)=\max⁡(f(x),g(x))=\max⁡(c,d),\quad ∀x∈K \\ (fg)(x)=f(x)g(x)=cd,\quad ∀x∈K
If in addition we have g ( x ) 0 , x I g(x)≠0,∀x∈I , we can further have d 0 d≠0 and
( f / g ) ( x ) = f ( x ) / g ( x ) = c / d , x K (f/g)(x)=f(x)/g(x)=c/d,\quad ∀x∈K
From above we can see that f + g , f g , max ( f , g ) , f g f+g,f-g,\max⁡(f,g),fg and if g g doesn’t vanish on I I , f / g f/g are constant on K K , since we choose arbitrary K K from P # P \mathbf P\#\mathbf P' , we conclude all the functions are piecewise constant on I I .

Exercise 11.2.3

By Lemma 11.2.7, we know f f is piecewise constant with respect to P # P \mathbf P\#\mathbf P' , thus the value
p . c . [ P # P ] f = J P # P c J J p.c.∫_{[\mathbf P\#\mathbf P' ]} f=∑_{J∈\mathbf P\#\mathbf P'}c_J |J|
is well defined. Now choose any K P K∈\mathbf P , then P K = { J P # P : J K } P_K=\{J∈\mathbf P\#\mathbf P':J⊆K\} is a partition of K K , and f f is constant with constant value c K c_K on both K K and all elements of P K \mathbf P_K , thus by Theorem 11.1.13 we have c J = c K , J P K c_J=c_K,∀J∈\mathbf P_K , and
K = J P K J c K K = J P K c K J = J P K c J J |K|=∑_{J∈\mathbf P_K}|J| ⇒ c_K |K|=∑_{J∈\mathbf P_K}c_K |J|=∑_{J∈\mathbf P_K}c_J |J|
Also, consider the set { J P # P : J K  for some  K P } P # P \{J∈\mathbf P\#\mathbf P':J⊆K\text{ for some }K∈\mathbf P\}⊆\mathbf P\#\mathbf P' , for any J P # P J∈\mathbf P\#\mathbf P' , by definition we can find a K P K∈\mathbf P and a K P K'∈\mathbf P' s.t. J = K K J=K∩K' , so the two sets are equal. Thus
p . c . [ P ] f = K P c K K = K P J P K c J J = J P # P c J J = p . c . [ P # P ] f p.c.∫_{[\mathbf P]}f=∑_{K∈\mathbf P}c_K |K| =∑_{K∈\mathbf P}∑_{J∈\mathbf P_K}c_J |J|=∑_{J∈\mathbf P\#\mathbf P'}c_J |J|=p.c.∫_{[\mathbf P\#\mathbf P']}f
Similarly we can prove p . c . [ P ] f = p . c . [ P # P ] f p.c.∫_{[\mathbf P' ]}f=p.c.∫_{[\mathbf P\#\mathbf P']}f , and the statement is proved.

Exercise 11.2.4

We choose partitions of I I : P \mathbf P' and P \mathbf P'' such that f f is piecewise constant with respect to P \mathbf P' and g g is piecewise constant with respect to P \mathbf P'' . Then let P = P # P \mathbf P=\mathbf P'\#\mathbf P'' , we can see f f and g g are piecewise constant with respect to P \mathbf P . For any K P K∈\mathbf P , let c K , d K c_K,d_K denote the constant value of f f and g g on K K .
( a ) f + g f+g is piecewise constant with respect to P \mathbf P , with constant value c K + d K c_K+d_K on K P K∈\mathbf P
p . c . I ( f + g ) = p . c . [ P ] ( f + g ) = K P ( c K + d K ) K = K P c K K + K P d K K = p . c . [ P ] f + p . c . [ P ] g = p . c . I f + p . c . I g \begin{aligned}p.c.∫_I (f+g) &=p.c.∫_{[\mathbf P]}(f+g) =∑_{K∈\mathbf P}(c_K+d_K)|K|=∑_{K∈\mathbf P}c_K |K|+∑_{K∈\mathbf P}d_K |K|\\&=p.c.∫_{[\mathbf P]}f+p.c.∫_{[\mathbf P]}g=p.c.∫_If+p.c.∫_I g \end{aligned}

( b ) c f cf is piecewise constant with respect to P \mathbf P , with constant value c c K cc_K on K P K∈\mathbf P
p . c . I ( c f ) = p . c . [ P ] ( c f ) = K P ( c c K ) K = c K P c K K = c ( p . c . [ P ] f ) = c ( p . c . I f ) p.c.∫_I(cf) =p.c.∫_{[\mathbf P]}(cf) =∑_{K∈\mathbf P}(cc_K)|K| =c∑_{K∈\mathbf P}c_K |K|=c(p.c.∫_{[\mathbf P]}f)=c(p.c.∫_If)

( c ) Use (b) we have p . c . I ( g ) = p . c . I g p.c.∫_I(-g) =-p.c.∫_Ig , then use (a) we get
p . c . I ( f g ) = p . c . I ( f + ( g ) ) = p . c . I f + p . c . I ( g ) = p . c . I f p . c . I g p.c.∫_I(f-g) =p.c.∫_I(f+(-g)) =p.c.∫_If+p.c.∫_I(-g) =p.c.∫_If-p.c.∫_Ig

( d ) If f ( x ) 0 , x I f(x)≥0,∀x∈I , then c K 0 , K P c_K≥0,∀K∈\mathbf P , so we have c K K 0 , K P c_K |K|≥0,∀K∈\mathbf P
p . c . I f = p . c . [ P ] f = K P c K K 0 p.c.∫_If=p.c.∫_{[\mathbf P]}f=∑_{K∈\mathbf P}c_K |K|≥0

( e ) We have f ( x ) g ( x ) 0 , x I f(x)-g(x)≥0,∀x∈I , so use (d) we have
p . c . I ( f g ) = p . c . I f p . c . I g 0 p . c . I f p . c . I g p.c.∫_I(f-g) =p.c.∫_If-p.c.∫_Ig≥0 ⇒ p.c.∫_If≥p.c.∫_Ig

( f ) If f ( x ) = c , x I f(x)=c,∀x∈I , then c K = c , K P c_K=c,∀K∈\mathbf P , so we have by Theorem 11.1.13
p . c . I f = p . c . [ P ] f = K P c K K = c K P K = c I p.c.∫_If=p.c.∫_{[\mathbf P]}f=∑_{K∈\mathbf P}c_K |K|=c∑_{K∈\mathbf P}|K| =c|I|

( g ) The set P { J \ I } \mathbf P∪\{J\backslash I\} is a partition of J J , and F F is piecewise constant on P { J \ I } \mathbf P∪\{J\backslash I\} , with additional constant value c J \ I = 0 c_{J\backslash I}=0 , thus
p . c . J F = p . c . [ P { J \ I } ] F = K P { J \ I } c K K = K P c K K + 0 J \ I = K P c K K = p . c . I f p.c.∫_JF=p.c.∫_{[\mathbf P∪\{J\backslash I\}]}F=∑_{K∈\mathbf P∪\{J\backslash I\}}c_K |K|\\=∑_{K∈\mathbf P}c_K |K|+0⋅|J\backslash I|=∑_{K∈\mathbf P}c_K |K|=p.c.∫_If

( h ) We have P J = { L J : L P } \mathbf P_{\mathbf J}=\{L∩J:L∈\mathbf P\} and P K = { L K : L P } \mathbf P_{\mathbf K}=\{L∩K:L∈\mathbf P\} be partitions of J J and K K , and since f f is piecewise constant with P \mathbf P , it’s easy to see f J f|_J is piecewise constant with P J \mathbf P_{\mathbf J} on J, f K f|_K is piecewise constant with P K \mathbf P_{\mathbf K} on K K . As we have J I J⊆I and K I K⊆I , we define
F ( x ) = { f J ( x ) , x J 0 , x J , G ( x ) = { f K ( x ) , x K 0 , x K F(x)=\begin{cases}f|_J (x),& x∈J\\0, & x∉J\end{cases},\quad G(x)=\begin{cases}f|_K (x),& x∈K\\0, & x∉K\end{cases}
Since { J , K } \{J,K\} is a partition of I I , we have f = f J + f K = F + G f=f|_J+f|_K=F+G , thus use (a) ,(g) we have
p . c . I f = p . c . I ( F + G ) = p . c . I F + p . c . I G = p . c . J f J + p . c . K f K p.c.∫_If=p.c.∫_I(F+G)=p.c.∫_IF+p.c.∫_IG\\=p.c.∫_Jf|_J +p.c.∫_Kf|_K

发布了77 篇原创文章 · 获赞 14 · 访问量 2808

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/102786222