陶哲轩实分析(上)10.2及习题-Analysis I 10.2

局部最值,Roll定理和中值定理(Lagrange)。

Exercise 10.2.1

First suppose f f attains a local maximum at x 0 x_0 , then δ > 0 ∃δ>0 , s.t.
f ( x ) f ( x 0 ) , x ( a , b ) ( x 0 δ , x 0 + δ ) f(x)≤f(x_0 ),\quad ∀x∈(a,b)∩(x_0-δ,x_0+δ)
Since f f is differentiable at x 0 x_0 , the limit
lim x x 0 ; x ( a , b ) ) f ( x ) f ( x 0 ) x x 0 \lim_{x→x_0;x∈(a,b))}\frac{f(x)-f(x_0)}{x-x_0}
exists, thus both left and right limit exists and is equal to f ( x 0 ) f' (x_0 ) .
Notice that
f ( x ) f ( x 0 ) x x 0 0 , x ( a , b ) ( x 0 δ , x 0 ) \frac{f(x)-f(x_0)}{x-x_0 }≥0,\quad x∈(a,b)∩(x_0-δ,x_0 )
and
f ( x ) f ( x 0 ) x x 0 0 , x ( a , b ) ( x 0 , x 0 + δ ) \frac{f(x)-f(x_0)}{x-x_0 }≤0,\quad x∈(a,b)∩(x_0,x_0+δ)
We shall have
f ( x 0 ) = lim x x 0 ; x ( a , b ) ( x 0 δ , x 0 ) f ( x ) f ( x 0 ) x x 0 0 f' (x_0 )=\lim_{x→x_0;x∈(a,b)∩(x_0-δ,x_0 ) }⁡\frac{f(x)-f(x_0)}{x-x_0 }≥0
and
f ( x 0 ) = lim x x 0 ; x ( a , b ) ( x 0 , x 0 + δ ) f ( x ) f ( x 0 ) x x 0 0 f' (x_0 )=\lim_{x→x_0;x∈(a,b)∩(x_0,x_0+δ) }\frac{f(x)-f(x_0)}{x-x_0 }≤0
Thus f ( x 0 ) = 0 f' (x_0 )=0 .
The case when f f attains a local minimum at x 0 x_0 can be similarly proved.

Exercise 10.2.2

Define
f ( x ) = x , x ( 1 , 1 ) f(x)=-|x|,\quad x∈(-1,1)
Then f f is continuous and attains a global maximum at 0 0 , but is not differentiable at 0 0 .
This doesn’t contradict Proposition 10.2.6, since Proposition 10.2.6 requires f f to be differentiable at local maximum or minimum.

Exercise 10.2.3

Define
f ( x ) = x 3 , x ( 1 , 1 ) f(x)=x^3,\quad x∈(-1,1)
Then f f is differentiable at 0, f ( 0 ) = 0 f' (0)=0 , but 0 0 is neither a local minimum nor local maximum.
This doesn’t contradict Proposition 10.2.6, since derivative equals zero is a necessary but not sufficient condition for a a local minimum nor local maximum.

Exercise 10.2.4

If x ( a , b ) , g ( x ) = g ( a ) = g ( b ) ∀x∈(a,b),g(x)=g(a)=g(b) , then g g is constant on [ a , b ] [a,b] and g ( x ) = 0 , x ( a , b ) g' (x)=0,x∈(a,b) by Theorem 10.1.13.
Now suppose if x ( a , b ) , g ( x ) g ( a ) ∃x∈(a,b),g(x)≠g(a) , then g ( x ) g ( b ) g(x)≠g(b) . Since g g is continuous on [ a , b ] [a,b] we can use the maximum principle, say f f attains it’s maximum at x m a x [ a , b ] x_{max}∈[a,b] , attains it’s minimum at x m i n [ a , b ] x_{min}∈[a,b] . We either have g ( x ) > g ( a ) g(x)>g(a) or g ( x ) < g ( a ) g(x)<g(a) by the trichotomy of real numbers.
If g ( x ) > g ( a ) g(x)>g(a) , then f f can’t attain its maximum at a or b, so x m a x ( a , b ) x_{max}∈(a,b) , since x m a x x_{max} is also a local maximum, we have f ( x m a x ) = 0 f' (x_{max} )=0 by Proposition 10.2.6.
If g ( x ) < g ( a ) g(x)<g(a) , then f f can’t attain its minimum at a a or b b , so x m i n ( a , b ) x_{min}∈(a,b) , since x m i n x_{min} is also a local minimum, we have f ( x m i n ) = 0 f' (x_{min} )=0 by Proposition 10.2.6.
In conclusion the statement is true in all cases.

Exercise 10.2.5

We let
F ( y ) = f ( y ) f ( b ) f ( a ) b a ( y a ) F(y)=f(y)-\frac{f(b)-f(a)}{b-a} (y-a)
Then by Proposition 9.4.9 and Theorem 10.1.13, F ( y ) F(y) is continuous on [ a , b ] [a,b] and differentiable on ( a , b ) (a,b) . Since F ( a ) = f ( a ) , F ( b ) = f ( a ) F(a)=f(a),F(b)=f(a) , we can use Roll’s theorem to say x ( a , b ) , F ( x ) = 0 ∃x∈(a,b),F' (x)=0 , or
F ( x ) = f ( x ) f ( b ) f ( a ) b a = 0 f ( x ) = f ( b ) f ( a ) b a F' (x)=f' (x)-\frac{f(b)-f(a)}{b-a} =0 ⇒ f' (x)=\frac{f(b)-f(a)}{b-a}

Exercise 10.2.6

For any x , y [ a , b ] x,y∈[a,b] , if x = y x=y the statement is obviously true. Without loss of generality we can suppose x < y x<y , then f [ x , y ] f|_{[x,y]} is continuous on [ x , y ] [x,y] and differentiable on ( x , y ) (x,y) , thus by mean value theorem, we can find a c ( x , y ) ( a , b ) c∈(x,y)⊂(a,b) such that
f ( c ) = f ( y ) f ( x ) y x = f ( x ) f ( y ) x y f' (c)=\frac{f(y)-f(x)}{y-x}=\frac{f(x)-f(y)}{x-y}
Since f ( x ) M , x ( a , b ) |f'(x)|≤M,∀x∈(a,b) , we have
f ( c ) = f ( x ) f ( y ) x y M f ( x ) f ( y ) M x y |f'(c)|=\left|\frac{f(x)-f(y)}{x-y}\right|≤M⇒|f(x)-f(y)|≤M|x-y|

Exercise 10.2.7

Since f f' is bounded, M > 0 ∃M>0 , s.t. f ( x ) M , x R |f'(x)|≤M,∀x∈\mathbf R . Then given ϵ > 0 ∀ϵ>0 , let δ = ϵ / M δ=ϵ/M , then as long as x y < δ |x-y|<δ , we can get from Exercise 10.2.6 that
f ( x ) f ( y ) M x y < M δ = ϵ |f(x)-f(y)|≤M|x-y|<Mδ=ϵ
which means f f is uniformly continuous.

发布了77 篇原创文章 · 获赞 14 · 访问量 2813

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/102742343