陶哲轩实分析(上)11.6及习题-Analysis I 11.6

Exerise 11.6.1

If I I is of the form [ a , b ] [a,b] then by Proposition 11.6.1 f f can be Riemann integrable. So we suppose I I is of the form ( a , b ) , ( a , b ] , [ a , b ) (a,b),(a,b],[a,b) .
Since f f is bounded, M > 0 , M f ( x ) M , x I \exists M>0,-M\leq f(x)\leq M,\forall x\in I , choose 0 < ε < ( b a ) / 2 0<{\varepsilon}<(b-a)/2 to be a small number, then by Proposition 11.6.1, f f is Riemann integrable on [ a + ε , b ε ] [a+{\varepsilon},b-{\varepsilon}] , in particular we can find a piecewise constant function h h on [ a + ε , b ε ] [a+{\varepsilon},b-{\varepsilon}] which majorizes f f and
[ a + ε , b ε ] h < [ a + ε , b ε ] f + ε \int_{[a+{\varepsilon},b-{\varepsilon}]}h<\int_{[a+{\varepsilon},b-{\varepsilon}]}f+{\varepsilon}
Define
H ( x ) = { h ( x ) , x [ a + ε , b ε ] M , x I \ [ a + ε , b ε ] H(x)=\begin{cases}h(x),&x\in [a+{\varepsilon},b-{\varepsilon}]\\M,&x\in I\backslash[a+{\varepsilon},b-{\varepsilon}] \end{cases}
Then H H majorizes f f on I I and is piecewise constant, we have
I f I H = [ a + ε , b ε ] h + 2 M ε < [ a + ε , b ε ] f + ( 2 M + 1 ) ε \overline{\int}_I f\leq \int_IH=\int_{[a+{\varepsilon},b-{\varepsilon}]}h+2M{\varepsilon}<\int_{[a+{\varepsilon},b-{\varepsilon}]}f+(2M+1){\varepsilon}
By the same logic we have
I f > [ a + ε , b ε ] f ( 2 M + 1 ) ε \underline{\int}_I f>\int_{[a+{\varepsilon},b-{\varepsilon}]}f-(2M+1){\varepsilon}
Thus
I f I f < ( 4 M + 2 ) ε \overline{\int}_I f-\underline{\int}_I f<(4M+2){\varepsilon}
This means f f is Riemann integrable on I I .

Exerise 11.6.2

Definition: Let I I be a bounded interval, and let f : I R f:I→\mathbf R . We say f f is piecewise monotonic on I I iff there exists a partition P \mathbf P such that f J f|_J is monotonic on J J for all J P J\in \mathbf P .
If f f is a bounded piecewise monotone function, then there exists a partition P \mathbf P such that f J f|_J is bounded and monotonic on J J for all J P J\in \mathbf P . By Corollary 11.6.3 f J f|_J is Riemann integrable on J J for all J P J\in \mathbf P .
We define
F J ( x ) = { f J ( x ) , x J 0 , x I \ J F_J (x)=\begin{cases}f|_J (x),&x\in J\\0,&x\in I\backslash J \end{cases}
By Theorem 11.4.1(g), F J F_J is Riemann integrable on I I , and we further have
f ( x ) = J P F J ( x ) f(x)=\sum_{J\in P}F_J(x)
So by Theorem 11.4.1(a), f f is Riemann integrable on I I .

Exerise 11.6.3

We consider [ 0 , N ] f \int_{[0,N]}f , by Proposition 11.6.1, [ 0 , N ] f \int_{[0,N]}f exists for all N N N\in \mathbf N . We let
P = { [ n , n + 1 ) : n = 0 , 1 , , N 1 } { N } \mathbf P=\{[n,n+1):n=0,1,\dots,N-1\}\cup \{N\}
be a partition of [ 0 , N ] [0,N] , and define f ( x ) = f ( n ) , x [ n , n + 1 ) , f ( N ) = f ( N ) \overline{f}(x)=f(n),x\in [n,n+1),\overline{f} (N)=f(N) , then f \overline{f} majorizes f f , thus
[ 0 , N ] f [ 0 , N ] f = J P f ( x ) = n = 0 N 1 f ( n ) \int_{[0,N]}f\leq \int_{[0,N]}\overline{f}=\sum_{J\in P}\overline{f} (x) =\sum_{n=0}^{N-1}f(n)
Similarly if we define f ( x ) = f ( n + 1 ) , x [ n , n + 1 ) , f ( N ) = f ( N ) \underline{f}(x)=f(n+1),x\in [n,n+1),\underline{f}(N)=f(N) , then f \underline{f} minorizes f f , so
[ 0 , N ] f [ 0 , N ] f = J P f ( x ) = n = 1 N f ( n ) \int_{[0,N]}f\geq \int_{[0,N]}\underline{f}=\sum_{J\in P}\underline{f}(x) =\sum_{n=1}^Nf(n)
Thus we have n = 1 N f ( n ) [ 0 , N ] f n = 0 N 1 f ( n ) \sum_{n=1}^Nf(n)\leq \int_{[0,N]}f\leq \sum_{n=0}^{N-1}f(n) . Thus if n = 0 f ( n ) \sum_{n=0}^{\infty}f(n) converges, we can see that n = 0 f ( n ) \sum_{n=0}^{\infty}f(n) is an upper bound for [ 0 , N ] f , N > 0 \int_{[0,N]}f,\forall N>0 , so sup N > 0 [ 0 , N ] f n = 0 f ( n ) \sup_{N>0}⁡\int_{[0,N]}f\leq \sum_{n=0}^{\infty}f(n) . On the other hand, if sup N > 0 [ 0 , N ] f \sup_{N>0}⁡\int_{[0,N]}f is finite, and assume n = 0 f ( n ) \sum_{n=0}^{\infty}f(n) diverges, since f ( n ) 0 , n f(n)\geq 0,\forall n , we must have n = 0 f ( n ) = + \sum_{n=0}^{\infty}f(n)=+{\infty} , thus there is N N' such that n = 0 N f ( n ) > sup ( N > 0 ) [ 0 , N ] f + f ( 0 ) \sum_{n=0}^{N'}f(n)>\sup(N>0)⁡\int_{[0,N]}f+f(0) , this means n = 1 N f ( n ) > sup N > 0 [ 0 , N ] f [ 0 , N ] f n = 1 N f ( n ) \sum_{n=1}^{N'}f(n)>\sup_{N>0} ⁡\int_{[0,N]} f\geq \int_{[0,N']}f\geq \sum_{n=1}^{N'}f(n) , a contradiction.

Exerise 11.6.4

We can define
f ( x ) = { 1 , x [ n + 1 / 4 , n + 3 / 4 ] , n N 0 , x [ 0 , + ) , x [ n + 1 / 4 , n + 3 / 4 ] , n N f(x)=\begin{cases}1,&x\in [n+1/4,n+3/4],n\in \mathbf N\\0,&x\in [0,+{\infty}),x\notin [n+1/4,n+3/4],n\in \mathbf N\end{cases}
then n = 0 f ( n ) = 0 \sum_{n=0}^{\infty}f(n)=0 , but [ 0 , N ] f = N / 2 \int_{[0,N]}f=N/2 , thus sup N > 0 [ 0 , N ] f \sup_{N>0}⁡\int_{[0,N]}f is not finite.
Conversely we can define
f ( x ) = { 1 , x = n , n N 0 , x [ 0 , + ) , x n , n N f(x)=\begin{cases}1,&x=n,n\in \mathbf N\\0,&x\in [0,+{\infty}),x\notin n,n\in \mathbf N\end{cases}
Then n = 0 f ( n ) = + \sum_{n=0}^{\infty}f(n)=+{\infty} , but [ 0 , N ] f = 0 \int_{[0,N]}f=0 , thus sup N > 0 [ 0 , N ] f \sup_{N>0}⁡\int_{[0,N]}f is finite.

##Exerise 11.6.5
When p 0 p\leq 0 , we have 1 / n p 0 1/n^p\nrightarrow0 , thus n = 1 ( 1 / n p ) \sum_{n=1}^{\infty}(1/n^p) diverges.
When p > 0 p>0 , the function f ( x ) = 1 / x p f(x)=1/x^p is monotonic decreasing on [ 1 , + ) [1,+{\infty}) , and f ( x ) 0 , x [ 1 , + ) f(x)\geq 0,\forall x\in [1,+{\infty}) , thus the condition of Proposition 11.6.4 is satisfied.
Consider
[ 1 , N ] f = [ 1 , N ] 1 x p \int_{[1,N]}f=\int_{[1,N]}\frac{1}{x^p}
Use Exercise 10.4.3 and some integral calculation we can show that
[ 1 , N ] f = [ 1 , N ] 1 x p = { 1 1 p ( N 1 p 1 ) , p 1 ln N , p = 1 \int_{[1,N]}f=\int_{[1,N]}\frac{1}{x^p} =\begin{cases}\frac{1}{1-p} (N^{1-p}-1),&p≠1\\ \ln⁡N,&p=1\end{cases}
Thus if 0 < p < 1 0<p<1 , we have N 1 p N^{1-p}→{\infty} as N N→{\infty} , so sup N > 0 [ 0 , N ] f \sup_{N>0}⁡\int_{[0,N]}f is not finite.
if p = 1 p=1 , then ln N \ln⁡N→{\infty} as N N→{\infty} , so sup N > 0 [ 0 , N ] f \sup_{N>0}⁡\int_{[0,N]}f is not finite.
If p > 1 p>1 , then for any N N we have
[ 1 , N ] f = 1 1 p ( 1 N p 1 1 ) = 1 p 1 ( 1 1 N p 1 ) < 1 p 1 \int_{[1,N]}f=\frac{1}{1-p} \left(\frac{1}{N^{p-1}} -1\right)=\frac{1}{p-1} \left(1-\frac{1}{N^{p-1}} \right)<\frac{1}{p-1}
so sup N > 0 [ 0 , N ] f \sup_{N>0}⁡\int_{[0,N]}f is finite.
Thus we can conclude n = 1 ( 1 / n p ) \sum_{n=1}^{\infty}(1/n^p) only converges when p > 1 p>1 .

发布了77 篇原创文章 · 获赞 14 · 访问量 2792

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/103910819