陶哲轩实分析(上)10.3及习题-Analysis I 10.3

单调函数和导数的关系,容易理解。

Exercise 10.3.1

Since f f is differentiable at x 0 x_0 , we have
f ( x 0 ) = lim x x 0 ; x X { x 0 } f ( x ) f ( x 0 ) x x 0 f' (x_0 )=\lim_{x→x_0;x∈X-\{x_0 \}}⁡\frac{f(x)-f(x_0)}{x-x_0}
If f f is monotone increasing, then we have
f ( x ) f ( x 0 ) , x < x 0 , f ( x ) f ( x 0 ) , x > x 0 f(x)≤f(x_0 ),x<x_0,\quad f(x)≥f(x_0 ),x>x_0
Thus in both x < x 0 x<x_0 and x > x 0 x>x_0 we shall have
f ( x ) f ( x 0 ) x x 0 0 f ( x 0 ) = lim x x 0 ; x X { x 0 } f ( x ) f ( x 0 ) x x 0 0 \frac{f(x)-f(x_0)}{x-x_0}≥0 ⇒ f' (x_0 )=\lim_{x→x_0;x∈X-\{x_0 \} }⁡\frac{f(x)-f(x_0)}{x-x_0}≥0
The case when f f is monotone decreasing can be similarly proved.

Exercise 10.3.2

Define
f ( x ) = { x , x ( 1 , 0 ] 2 x , x ( 0 , 1 ) f(x)=\begin{cases}x,&x∈(-1,0]\\2x,&x∈(0,1) \end{cases}
This doesn’t contradict Proposition 10.3.1 since Proposition 10.3.1 requires f f to be differentiable at the point (0 in this case).

Exercise 10.3.3

Define
f ( x ) = x 3 , x ( 1 , 1 ) f(x)=x^3,\quad x∈(-1,1)
Then f f is differentiable at 0, f ( 0 ) = 0 f' (0)=0 , but f f is monotone increasing.
This doesn’t contradict Proposition 10.3.1 since f > 0 f'>0 is a necessary but not sufficient condition for f f to be strictly monotone increasing.

Exercise 10.3.4

For any x y [ a , b ] x≠y∈[a,b] , without loss of generality we can suppose x < y x<y , then f [ x , y ] f|_{[x,y]} is continuous and differentiable on [ x , y ] [x,y] , thus by mean value theorem, we can find a c ( x , y ) ( a , b ) c∈(x,y)⊂(a,b) such that
f ( c ) = f ( y ) f ( x ) y x = f ( x ) f ( y ) x y f' (c)=\frac{f(y)-f(x)}{y-x}=\frac{f(x)-f(y)}{x-y}
If f ( x ) > 0 , x [ a , b ] f' (x)>0,∀x∈[a,b] , then f ( c ) > 0 f' (c)>0 and f ( x ) < f ( y ) f(x)<f(y) , so f f is strictly monotone increasing.
If f ( x ) < 0 , x [ a , b ] f' (x)<0,∀x∈[a,b] , then f ( c ) < 0 f' (c)<0 and f ( x ) > f ( y ) f(x)>f(y) , so f f is strictly monotone decreasing.
If f ( x ) = 0 , x [ a , b ] f' (x)=0,∀x∈[a,b] , then f ( c ) = 0 f' (c)=0 and f ( x ) = f ( y ) f(x)=f(y) , so f f is a constant function.

Exercise 10.3.5

Define
f ( x ) = { x + 1 , x ( 1 , 0 ) x 1 , x ( 0 , 1 ) f(x)=\begin{cases}x+1,&x∈(-1,0)\\x-1,&x∈(0,1)\end{cases}
Then if X = ( 1 , 0 ) ( 0 , 1 ) X=(-1,0)∪(0,1) , then f f is differentiable on X X and f ( x ) = 1 > 0 , x X f' (x)=1>0,∀x∈X , but we have f ( 1 / 2 ) = 1 / 2 < f ( 1 / 2 ) = 1 / 2 f(1/2)=-1/2<f(-1/2)=1/2 , thus f f in not strictly monotone increasing.
The key condition which is different from Proposition 10.3.3 is that X X is allowed to be a disconnected set.

发布了77 篇原创文章 · 获赞 14 · 访问量 2812

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/102742658