陶哲轩实分析(上)11.3及习题-Analysis I 11.3

Exercise 11.3.1

Since f f majorizes g g we have f ( x ) g ( x ) , x I f(x)≥g(x),∀x∈I , and g g majorizes h h means g ( x ) h ( x ) , x I g(x)≥h(x),∀x∈I , thus we have f ( x ) h ( x ) , x I f(x)≥h(x),∀x∈I , which means f f majorizes h h .
If f f and g g majorize each other, then it means f ( x ) g ( x ) , x I f(x)≥g(x),∀x∈I and g ( x ) f ( x ) , x I g(x)≥f(x),∀x∈I , so we shall have f ( x ) = g ( x ) , x I f(x)=g(x),∀x∈I .

Exercise 11.3.2

We have
f  majorizes  g f ( x ) g ( x ) , x I f ( x ) + h ( x ) g ( x ) + h ( x ) , x I ( f + h ) ( x ) ( g + h ) ( x ) , x I f + h  majorizes  g + h \begin{aligned}f \text{ majorizes }g &⇒f(x)≥g(x),∀x∈I \\&⇒f(x)+h(x)≥g(x)+h(x),∀x∈I \\&⇒(f+h)(x)≥(g+h)(x),∀x∈I \\&⇒ f+h \text{ majorizes }g+h\end{aligned}
We cannot have f h fh majorizes g h gh if f f majorizes g g , since if we let h ( x ) = 1 h(x)=-1 on I I , we shall have ( f h ) ( x ) = f ( x ) h ( x ) = f ( x ) g ( x ) = g ( x ) h ( x ) = ( g h ) ( x ) (fh)(x)=f(x)h(x)=-f(x)≤-g(x)=g(x)h(x)=(gh)(x) .
We cannot have c f cf majorizes c g cg if f f majorizes g g , we could let c = 1 c=-1 and use a similar proof to show ( c f ) ( x ) ( c g ) ( x ) (cf)(x)≤(cg)(x) .

Exercise 11.3.3

For f f , we see f ( x ) f ( x ) , x I f(x)≥f(x),∀x∈I , thus f f majorizes f f , and f f is piecewise constant, thus by definition of upper Riemann integral we have
I f p . c . I f \overline{\int}_I f≤p.c.\int_If
By the same logic we have f f minorizes f f , thus
I f p . c . I f \underline{\int}_I f≥p.c.\int_I f
Thus we have I f I f \underline{\int}_I f≥\overline{\int}_I f , use Lemma 11.3.3 we can see f f is Riemann integrable, and
I f = p . c . I f \int_If=p.c.\int_If

Exercise 11.3.4

If g g is piecewise constant with P \mathbf P and majorizes f f on I I , we denote c J c_J as the constant value of g g for each J P J∈\mathbf P , then c J f ( x ) , x J c_J≥f(x),∀x∈J , thus
c J sup x J f ( x ) , J P c_J≥\sup_{x∈J}f(x),∀J∈P
So we have
p . c . I g = J P c J J = J P , J c J J J P , J ( sup x J f ( x ) ) J = U ( f , P ) p.c.\int_Ig=\sum\limits_{J∈\mathbf P}c_J |J|=\sum\limits_{J∈\mathbf P,J\neq \emptyset}c_J |J|≥\sum\limits_{J∈\mathbf P,J\neq \emptyset}\left(\sup_{x∈J}⁡f(x) \right) |J|=U(f,\mathbf P)
A similar proof can show p . c . I h L ( f , P ) p.c.\int_Ih≤L(f,\mathbf P) .

Exercise 11.3.5

By Lemma 11.3.11, let P \mathbf P be a partition of I I . If g g is piecewise constant with P \mathbf P and majorizes f f on I I , we have p . c . I g U ( f , P ) p.c.\int_Ig≥U(f,\mathbf P) , so
p . c . I g inf { U ( f , P ) : P  is a partition of  I } p.c.\int_Ig≥\inf \{U(f,\mathbf P):\mathbf P\text{ is a partition of }I\}
then since g g is arbitrary as long as it is piecewise constant with P \mathbf P and majorizes f f on I I ,
I f inf { U ( f , P ) : P  is a partition of  I } \overline{\int}_I f≥\inf \{U(f,\mathbf P):\mathbf P\text{ is a partition of }I\}
On the other hand, let m a t h b f P mathbf P be a partition of I I . We define a new piecewise constant function with P \mathbf P and majorizes f f on I I as follows: x I , J P , x J ∀x∈I,∃J∈\mathbf P,x∈J , this J J is unique, so we let
G ( x ) = sup x J f ( x ) G(x)=\sup_{x∈J}⁡f(x)
Then G G is piecewise constant with P \mathbf P and majorizes f f on I I , further we have
p . c . I G = U ( f , P ) p.c.\int_IG=U(f,\mathbf P)
Thus we can say that
I f p . c . I G = U ( f , P ) \overline{\int}_I f≤p.c.∫_IG=U(f,\mathbf P)
Since P \mathbf P could be any partition of I I , we can say
I f U ( f , P ) , P  is a partition of  I \overline{\int}_I f≤U(f,\mathbf P),\quad ∀\mathbf P\text{ is a partition of }I
So it’s easy to see
I f inf { U ( f , P ) : P  is a partition of  I } \overline{\int}_I f≤\inf \{U(f,\mathbf P):\mathbf P\text{ is a partition of }I\}
Thus we can have
I f = inf { U ( f , P ) : P  is a partition of  I } \overline{\int}_I f=\inf \{U(f,\mathbf P):\mathbf P\text{ is a partition of }I\}
A similar proof can show that
I f = sup { L ( f , P ) : P  is a partition of  I } \underline{\int}_I f=\sup \{L(f,\mathbf P):\mathbf P\text{ is a partition of }I\}

发布了77 篇原创文章 · 获赞 14 · 访问量 2795

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/103188547