陶哲轩实分析(上)10.5及习题-Analysis I 10.5

著名的洛必达法则。

Exercise 10.5.1

By Proposition 10.1.7, since g ( x 0 ) 0 g' (x_0 )≠0 , we can find a δ > 0 δ>0 such that for all x X x∈X and x x 0 δ |x-x_0 |≤δ , we have
g ( x ) g ( x 0 ) g ( x 0 ) ( x x 0 ) g ( x 0 ) 2 x x 0 |g(x)-g(x_0 )-g' (x_0 )(x-x_0 )|≤\frac{|g' (x_0 )|}{2} |x-x_0 |
Using triangle inequality and g ( x 0 ) = 0 g(x_0 )=0 , we further get
g ( x 0 ) 2 x x 0 g ( x ) \frac{|g' (x_0 )|}{2} |x-x_0 |≤|g(x)|
Thus if x ( X ( x 0 δ , x 0 + δ ) ) { x 0 } x∈\left(X∩(x_0-δ,x_0+δ)\right)-\{x_0 \} , we shall have g ( x ) > 0 |g(x)|>0 , or g ( x ) 0 g(x)≠0 . In this case we can safely use Proposition 9.3.14 to have
lim x x 0 ; x ( X ( x 0 δ , x 0 + δ ) ) { x 0 } f ( x ) g ( x ) = lim x x 0 ; x ( X ( x 0 δ , x 0 + δ ) ) { x 0 } f ( x ) f ( x 0 ) g ( x ) g ( x 0 ) = lim x x 0 ; x ( X ( x 0 δ , x 0 + δ ) ) { x 0 } f ( x ) f ( x 0 ) x x 0 lim x x 0 ; x ( X ( x 0 δ , x 0 + δ ) ) { x 0 } g ( x ) g ( x 0 ) x x 0 = ( f ( x 0 ) g ( x 0 ) \lim_{x→x_0;x∈(X∩(x_0-δ,x_0+δ))-\{x_0 \} } ⁡\frac{f(x)}{g(x)}=\lim_{x→x_0;x∈(X∩(x_0-δ,x_0+δ))-\{x_0 \} } \frac{f(x)-f(x_0)}{g(x)-g(x_0 )}\\=\frac{\lim_{x→x_0;x∈(X∩(x_0-δ,x_0+δ))-\{x_0 \} }⁡\frac{f(x)-f(x_0 )}{x-x_0 }}{\lim_{x→x_0;x∈(X∩(x_0-δ,x_0+δ))-\{x_0 \} }⁡\frac{g(x)-g(x_0)}{x-x_0 }} =\frac{(f' (x_0 )}{g' (x_0 ) }

Exercise 10.5.2

In the first example, we have g ( x ) = 1 + x 0 g(x)=1+x↛0 if x 0 x→0 .
In the second example, notice that to use the L’Hôpital’s rule, we need first the limit
lim x a ; x ( a , b ] f ( x ) g ( x ) \lim_{x→a;x∈(a,b]}⁡\frac{f' (x)}{g' (x) }
exist, then we can safely use the rule, but in this example, the limit
lim x 0 + ; x ( 0 , ) ( x 2 sin ( x 4 ) ) x \lim_{x→0+;x∈(0,∞) }⁡\frac{(x^2 \sin⁡(x^{-4} )) '}{x'}
doesn’t exist, due to the calculations in the textbook. So it’s not safe to use the L’Hôpital’s rule.

发布了77 篇原创文章 · 获赞 14 · 访问量 2810

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/102743427