陶哲轩实分析(上)10.1及习题-Analysis I 10.1

介绍了微分的许多基本概念。

Exercise 10.1.1

f f is differentiable at x 0 x_0 means the limit
lim x x 0 ; x X { x 0 } f ( x ) f ( x 0 ) x x 0 \lim_{x→x_0;x∈X-\{x_0 \} }\frac{f(x)-f(x_0)}{x-x_0}
exists, suppose the limit is L L , then by definition this means ϵ > 0 , δ > 0 , ∀ϵ>0,∃δ>0, s.t.
f ( x ) f ( x 0 ) x x 0 L < ϵ , x ( ( x 0 δ , x 0 + δ ) X ) { x 0 } \left|\frac{f(x)-f(x_0 )}{x-x_0 }-L\right|<ϵ,\quad∀x∈\Big((x_0-δ,x_0+δ)∩X\Big)-\{x_0 \}
Consider f Y f|_Y , if y ( x 0 δ , x 0 + δ ) Y ∀y∈(x_0-δ,x_0+δ)∩Y and y x 0 y≠x_0 , then since Y X Y⊂X , we have y ( ( x 0 δ , x 0 + δ ) X ) { x 0 } y∈\Big((x_0-δ,x_0+δ)∩X\Big)-\{x_0 \} , so
f Y ( y ) f Y ( x 0 ) y x 0 L = f ( y ) f ( x 0 ) y x 0 L < ϵ \left|\frac{f|_Y (y)-f|_Y (x_0 )}{y-x_0 }-L\right|=\left|\frac{f(y)-f(x_0 )}{y-x_0 }-L\right|<ϵ
Which means the limit lim y x 0 ; y Y { x 0 } f Y ( y ) f Y ( x 0 ) y x 0 \lim_{y→x_0;y∈Y-\{x_0 \} }\frac{f|_Y (y)-f|_Y (x_0 )}{y-x_0} ⁡exists, i.e. f Y f|_Y is differentiable at x 0 x_0 .

Exercise 10.1.2

(a) implies (b):
If (a) is valid, then
lim x x 0 ; x X { x 0 } f ( x ) f ( x 0 ) x x 0 = L \lim_{x→x_0;x∈X-\{x_0 \} }\frac{f(x)-f(x_0)}{x-x_0 }=L
Thus ϵ > 0 , δ > 0 ∀ϵ>0,∃δ>0 , s.t. whenever x ( [ x 0 δ , x 0 + δ ] X ) { x 0 } x∈([x_0-δ,x_0+δ]∩X)-\{x_0 \}
f ( x ) f ( x 0 ) x x 0 L ϵ f ( x ) f ( x 0 ) L ( x x 0 ) ϵ x x 0 \left|\frac{f(x)-f(x_0)}{x-x_0 }-L\right|≤ϵ ⇒|f(x)-f(x_0 )-L(x-x_0 )|≤ϵ|x-x_0 |
Note that if x = x 0 x=x_0 , then f ( x ) f ( x 0 ) L ( x x 0 ) = 0 0 = ϵ x x 0 |f(x)-f(x_0 )-L(x-x_0 )|=0≤0=ϵ|x-x_0 | . So we can conclude (b) is true.
(b) implies (a):
If (b) is true, then for every ϵ > 0 ϵ>0 , we let x ( [ x 0 δ , x 0 + δ ] X ) { x 0 } x∈([x_0-δ,x_0+δ]∩X)-\{x_0 \} , obviously x x satisfies the condition of (b) and in addition we have x x 0 0 |x-x_0 |≠0 , thus we have
f ( x ) ( f ( x 0 ) + L ( x x 0 ) ) ϵ x x 0 |f(x)-(f(x_0 )+L(x-x_0 ))|≤ϵ|x-x_0 |
And from this we can further have
f ( x ) f ( x 0 ) x x 0 L ϵ \left|\frac{f(x)-f(x_0)}{x-x_0 }-L\right|≤ϵ
which means (a) is true since
lim x x 0 ; x X { x 0 } f ( x ) f ( x 0 ) x x 0 = L \lim_{x→x_0;x∈X-\{x_0 \}} ⁡\frac{f(x)-f(x_0)}{x-x_0 }=L

Exercise 10.1.3

If f f is differentiable at x 0 x_0 and we let the derivative be L L , obviously L < + |L|<+∞ , by Proposition 10.1.7 we can have ϵ > 0 , δ > 0 ∀ϵ>0,∃δ>0 , s.t.
f ( x ) ( f ( x 0 ) + L ( x x 0 ) ) ϵ x x 0 , x X , x x 0 δ |f(x)-(f(x_0 )+L(x-x_0 ))|≤ϵ|x-x_0 |,\quad ∀x∈X,|x-x_0 |≤δ
This means
f ( x ) f ( x 0 ) ( L + ϵ ) x x 0 , x X , x x 0 δ |f(x)-f(x_0 )|≤(L+ϵ)|x-x_0 |,\quad ∀x∈X,|x-x_0 |≤δ
Now let δ = min ( δ , δ / ( L + ϵ ) ) δ'=\min⁡(δ,δ/(L+ϵ)) , then if x X , x x 0 δ x∈X,|x-x_0 |≤δ' , we have f ( x ) f ( x 0 ) ϵ |f(x)-f(x_0 )|≤ϵ , so f f is continuous at x 0 x_0 .
If instead we want to use the limit laws, we can see that
lim x x 0 ; x X { x 0 } f ( x ) f ( x 0 ) x x 0 = L lim x x 0 ; x X { x 0 } ( f ( x ) f ( x 0 ) ) = lim x x 0 ; x X { x 0 } L ( x x 0 ) lim x x 0 ( f ( x ) f ( x 0 ) ) = lim x x 0 ) L ( x x 0 ) = L lim x x 0 ( x x 0 ) = 0 lim x x 0 ) f ( x ) = lim x x 0 f ( x 0 ) = f ( x 0 ) \begin{aligned} \lim_{x→x_0;x∈X-\{x_0 \}} \frac{f(x)-f(x_0)}{x-x_0}=L &⇒ \lim_{x→x_0;x∈X-\{x_0 \}}(f(x)-f(x_0 ))=\lim_{x→x_0;x∈X-\{x_0 \} } L(x-x_0 ) \\&⇒\lim_{x→x_0 }⁡(f(x)-f(x_0 ))=\lim_{x→x_0 )}L(x-x_0 )=L \lim_{x→x_0}⁡(x-x_0 )=0 \\&⇒ \lim_{x→x_0 )}f(x)=\lim_{x→x_0 }⁡f(x_0)=f(x_0 )\end{aligned}

Exercise 10.1.4

( a ) We have
lim x x 0 ; x X { x 0 } f ( x ) f ( x 0 ) x x 0 = lim x x 0 ; x X { x 0 } c c 0 x x 0 = lim x x 0 ; x X { x 0 } 0 = 0 \lim_{x→x_0;x∈X-\{x_0 \}} \frac{f(x)-f(x_0)}{x-x_0}=\lim_{x→x_0;x∈X-\{x_0 \}} \frac{c-c_0}{x-x_0}=\lim_{x→x_0;x∈X-\{x_0 \}}⁡0=0
( b ) We have
lim x x 0 ; x X { x 0 } f ( x ) f ( x 0 ) x x 0 = lim x x 0 ; x X { x 0 } x x 0 x x 0 = lim x x 0 ; x X { x 0 } 1 = 1 \lim_{x→x_0;x∈X-\{x_0 \}} \frac{f(x)-f(x_0)}{x-x_0}=\lim_{x→x_0;x∈X-\{x_0 \}} \frac{x-x_0}{x-x_0}=\lim_{x→x_0;x∈X-\{x_0 \}}⁡1=1
( c ) We have
lim x x 0 ; x X { x 0 } ( f + g ) ( x ) ( f + g ) ( x 0 ) x x 0 = lim x x 0 ; x X { x 0 } ( f ( x ) + g ( x ) f ( x 0 ) g ( x 0 ) x x 0 = lim x x 0 ; x X { x 0 } f ( x ) f ( x 0 ) x x 0 + lim x x 0 ; x X { x 0 } g ( x ) g ( x 0 ) x x 0 = f ( x 0 ) + g ( x 0 ) \lim_{x→x_0;x∈X-\{x_0 \}} \frac{(f+g)(x)-(f+g)(x_0)}{x-x_0}=\lim_{x→x_0;x∈X-\{x_0 \}} \frac{(f(x)+g(x)-f(x_0 )-g(x_0)}{x-x_0 }\\=\lim_{x→x_0;x∈X-\{x_0 \}}\frac{f(x)-f(x_0)}{x-x_0}+\lim_{x→x_0;x∈X-\{x_0 \}}⁡ \frac{g(x)-g(x_0)}{x-x_0 }=f' (x_0 )+g' (x_0 )
Thus f + g f+g is differentiable at x 0 x_0 and ( f + g ) ( x 0 ) = f ( x 0 ) + g ( x 0 ) (f+g)' (x_0 )=f' (x_0 )+g' (x_0 )
( d ) We have, use the “middle-man trick”, that
lim x x 0 ; x X { x 0 } ( f g ) ( x ) ( f g ) ( x 0 ) x x 0 = lim x x 0 ; x X { x 0 } f ( x ) ( g ( x ) g ( x 0 ) ) + ( f ( x ) f ( x 0 ) ) g ( x 0 ) x x 0 = lim x x 0 ; x X { x 0 } f ( x ) ( g ( x ) g ( x 0 ) x x 0 + lim x x 0 ; x X { x 0 } f ( x ) f ( x 0 ) x x 0 g ( x 0 ) \lim_{x→x_0;x∈X-\{x_0 \}}\frac{(fg)(x)-(fg)(x_0)}{x-x_0}=\lim_{x→x_0;x∈X-\{x_0 \}}\frac{f(x)(g(x)-g(x_0 ))+(f(x)-f(x_0 ))g(x_0 )}{x-x_0}\\=\lim_{x→x_0;x∈X-\{x_0 \}}\frac{f(x)(g(x)-g(x_0)}{x-x_0}+\lim_{x→x_0;x∈X-\{x_0 \}}\frac{f(x)-f(x_0 )}{x-x_0} g(x_0 )
Use Proposition 10.1.10 and limit laws, we can further calculate:
      lim x x 0 ; x X { x 0 } f ( x ) ( g ( x ) g ( x 0 ) x x 0 + lim x x 0 ; x X { x 0 } f ( x ) f ( x 0 ) x x 0 g ( x 0 ) = ( lim x x 0 ; x X { x 0 } f ( x ) ) ( lim x x 0 ; x X { x 0 } g ( x ) g ( x 0 ) x x 0 ) + g ( x 0 ) lim x x 0 ; x X { x 0 } f ( x ) f ( x 0 ) x x 0 = f ( x 0 ) g ( x 0 ) + f ( x 0 ) g ( x 0 ) \begin{aligned}&{\ }{\ }{\ }{\ }{\ }\lim_{x→x_0;x∈X-\{x_0 \}}\frac{f(x)(g(x)-g(x_0)}{x-x_0}+\lim_{x→x_0;x∈X-\{x_0 \}}\frac{f(x)-f(x_0 )}{x-x_0} g(x_0 )\\&=\left(\lim_{x→x_0;x∈X-\{x_0 \}}⁡f(x) \right)\left(\lim_{x→x_0;x∈X-\{x_0 \}}\frac{g(x)-g(x_0 )}{x-x_0 }\right)+g(x_0 ) \lim_{x→x_0;x∈X-\{x_0 \}}\frac{f(x)-f(x_0 )}{x-x_0 }\\&=f(x_0 ) g' (x_0 )+f' (x_0 )g(x_0 )\end{aligned}

( e ) Combining (a) and (d), let g ( x ) = c g(x)=c , then g ( x ) = 0 g' (x)=0 , and c f cf differentiable at x 0 x_0 , and
( c f ) ( x 0 ) = ( g f ) ( x 0 ) = f ( x 0 ) g ( x 0 ) + f ( x 0 ) g ( x 0 ) = c f ( x 0 ) (cf)' (x_0 )=(gf)' (x_0 )=f(x_0 ) g' (x_0 )+f' (x_0 )g(x_0 )=cf' (x_0 )
( f ) from (e) we know g –g is differentiable at x 0 x_0 , ( g ) ( x 0 ) = g ( x 0 ) (-g)' (x_0 )=-g' (x_0 ) , thus by (a) we have
( f g ) ( x 0 ) = ( f + ( g ) ) ( x 0 ) = f ( x 0 ) + ( g ) ( x 0 ) = f ( x 0 ) g ( x 0 ) (f-g)' (x_0 )=\left(f+(-g))' (x_0 \right)=f' (x_0 )+(-g)' (x_0 )=f' (x_0 )-g' (x_0 )
( g ) We have, use Proposition 10.1.10 and limit laws,
lim x x 0 ; x X { x 0 } ( 1 / g ) ( x ) ( 1 / g ) ( x 0 ) x x 0 = lim x x 0 ; x X { x 0 } 1 / g ( x ) 1 / g ( x 0 ) x x 0 = lim x x 0 ; x X { x 0 } 1 ( g ( x ) g ( x 0 ) g ( x ) g ( x 0 ) x x 0 = g ( x 0 ) g ( x 0 ) 2 \lim_{x→x_0;x∈X-\{x_0 \}}\frac{(1/g)(x)-(1/g)(x_0)}{x-x_0 }=\lim_{x→x_0;x∈X-\{x_0 \}}\frac{1/g(x)-1/g(x_0)}{x-x_0}\\=\lim_{x→x_0;x∈X-\{x_0 \}}\frac{-1}{(g(x)g(x_0)} \frac {g(x)-g(x_0)}{x-x_0}=-\frac{g' (x_0 )}{g(x_0 )^2 }
( h ) by (d) and (g), f / g f/g is differentiable at x 0 x_0 , and
( f g ) ( x 0 ) = ( f ( 1 g ) ) ( x 0 ) = f ( x 0 ) ( 1 g ) ( x 0 ) + f ( x 0 ) ( 1 g ) ( x 0 ) = f ( x 0 ) g ( x 0 ) f ( x 0 ) g ( x 0 ) g ( x 0 ) 2 = f ( x 0 ) g ( x 0 ) f ( x 0 ) g ( x 0 ) ( g ( x 0 ) 2 \left(\frac{f}{g}\right)' (x_0 )=\left(f\left(\frac{1}{g}\right)\right)' (x_0 )=f' (x_0 )\left(\frac{1}{g}\right)(x_0 )+f(x_0 ) \left(\frac{1}{g}\right)' (x_0 )=\frac{f' (x_0 )}{g(x_0 )} -f(x_0 ) \frac{g' (x_0 )}{g(x_0 )^2 }\\=\frac{f' (x_0 )g(x_0 )-f(x_0 ) g' (x_0 )}{(g(x_0 )^2 }

Exercise 10.1.5

If n = 0 n=0 , then f ( x ) = x 0 = 1 f(x)=x^0=1 , and f ( x ) = 0 = 0 x ( 1 ) = 0 , x R { 0 } f' (x)=0=0x^(-1)=0,x∈\mathbf R-\{0\} , when x = 0 x=0 , use definition we can show f ( 0 ) = 0 f' (0)=0 . Thus f f is differentiable on R \mathbf R .
Now suppose the case is true for n n , then in the case of n + 1 n+1 , we use Theorem 10.1.13 and have f ( x ) = x n + 1 = x n x f(x)=x^{n+1}=x^n⋅x is differentiable on R \mathbf R , and
f ( x ) = ( x n ) x + ( x n ) ( x ) = n x n + x n = ( n + 1 ) x n , x R f' (x)=(x^n )' x+(x^n ) (x)'=nx^n+x^n=(n+1) x^n,\quad ∀x∈\mathbf R
Thus the induction hypothesis holds.

Exercise 10.1.6

Use negative induction, first let n = 1 n=-1 , so f ( x ) = x 1 f(x)=x^{-1} , then f ( x ) = x 2 f' (x)=-x^{-2} , the induction hypothesis is satisfied.
Now suppose for negative integer n n the induction holds, let f ( x ) = x n 1 = x n x 1 f(x)=x^{n-1}=x^n⋅x^{-1} , by Theorem 10.1.13 f ( x ) f(x) is differentiable on R { 0 } \mathbf R-\{0\} , and
f ( x ) = ( x n ) ( x 1 ) + x n ( x 1 ) = n x n 2 x n 2 = ( n 1 ) x n 2 f' (x)=(x^n )' (x^{-1} )+x^n (x^{-1} )'=nx^{n-2}-x^{n-2}=(n-1) x^{n-2}
Thus the induction hypothesis holds.

Exercise 10.1.7

We have f ( x 0 ) = L 1 f' (x_0 )=L_1 and g ( y 0 ) = L 2 g' (y_0 )=L_2 exists and is finite. Then for ϵ > 0 , ϵ > 0 ∀ϵ>0, ∃ϵ'>0 s.t.
ϵ 2 + L 1 ϵ + L 2 ϵ ϵ ϵ'^2+|L_1 | ϵ'+|L_2 | ϵ'≤ϵ
For this ϵ ϵ' , use Proposition 10.1.7, δ 1 > 0 ∃δ_1>0 , s.t.
g ( y ) g ( y 0 ) L 2 ( y y 0 ) ϵ y y 0 , y Y , y y 0 δ 1 |g(y)-g(y_0 )-L_2 (y-y_0)|≤ϵ' |y-y_0 |,\quad ∀y∈Y,|y-y_0 |≤δ_1
For this δ 1 , δ 2 > 0 δ_1,∃δ_2>0 , s.t.
f ( x ) f ( x 0 ) < δ 1 , x X , x x 0 < δ 2 |f(x)-f(x_0)|<δ_1,\quad ∀x∈X,|x-x_0 |<δ_2
We can also have a δ 3 > 0 δ_3>0 , s.t.
f ( x ) f ( x 0 ) L 1 ( x x 0 ) ϵ x x 0 , x X , x x 0 δ 3 |f(x)-f(x_0 )-L_1 (x-x_0)|≤ϵ' |x-x_0 |,\quad ∀x∈X,|x-x_0 |≤δ_3
Let δ = min ( δ 2 , δ 3 ) δ=\min⁡(δ_2,δ_3) , then when x X , x x 0 δ x∈X,|x-x_0 |≤δ , we shall have f ( x ) f ( x 0 ) < δ 1 |f(x)-f(x_0)|<δ_1 , and
g ( f ( x ) ) g ( f ( x 0 ) ) L 2 ( f ( x ) f ( x 0 ) ) ϵ f ( x ) f ( x 0 ) |g(f(x))-g(f(x_0 ))-L_2 (f(x)-f(x_0 ))|≤ϵ' |f(x)-f(x_0)|
Use the triangle inequality we can further deduce
      g ( f ( x ) ) g ( f ( x 0 ) ) L 2 ( f ( x ) f ( x 0 ) ) = g ( f ( x ) ) g ( f ( x 0 ) ) L 2 ( f ( x ) f ( x 0 ) L 1 ( x x 0 ) ) L 2 L 1 ( x x 0 ) g ( f ( x ) ) g ( f ( x 0 ) ) L 2 L 1 ( x x 0 ) L 2 ( f ( x ) f ( x 0 ) L 1 ( x x 0 ) ) \begin{aligned}&{\ }{\ }{\ }{\ }{\ }|g(f(x))-g(f(x_0 ))-L_2 (f(x)-f(x_0 ))|\\&=|g(f(x))-g(f(x_0 ))-L_2 (f(x)-f(x_0 )-L_1 (x-x_0 ))-L_2 L_1 (x-x_0)|\\&≥|g(f(x))-g(f(x_0 ))-L_2 L_1 (x-x_0 )|-|L_2 (f(x)-f(x_0 )-L_1 (x-x_0 ))|\end{aligned}
Thus
      g ( f ( x ) ) g ( f ( x 0 ) ) L 2 L 1 ( x x 0 ) g ( f ( x ) ) g ( f ( x 0 ) ) L 2 ( f ( x ) f ( x 0 ) ) + L 2 ( f ( x ) f ( x 0 ) L 1 ( x x 0 ) ) ϵ f ( x ) f ( x 0 ) + L 2 ϵ x x 0 ϵ 2 x x 0 + L 1 ϵ x x 0 + L 2 ϵ x x 0 = ( ϵ 2 + L 1 ϵ + L 2 ϵ ) x x 0 ϵ x x 0 \begin{aligned}&{\ }{\ }{\ }{\ }{\ }|g(f(x))-g(f(x_0 ))-L_2 L_1 (x-x_0 )|\\&≤|g(f(x))-g(f(x_0 ))-L_2 (f(x)-f(x_0 ))|+|L_2 (f(x)-f(x_0 )-L_1 (x-x_0 ))|\\&≤ϵ' |f(x)-f(x_0 )|+|L_2 | ϵ' |x-x_0 |\\&≤ϵ'^2 |x-x_0 |+|L_1 | ϵ' |x-x_0 |+|L_2 | ϵ' |x-x_0 |\\&=(ϵ'^2+|L_1 | ϵ'+|L_2 | ϵ' )|x-x_0 |≤ϵ|x-x_0 |\end{aligned}
Use proposition 10.1.7, we can say the function g f g∘f is differentiable at x 0 x_0 , and
( g f ) ( x 0 ) = L 2 L 1 = g ( y 0 ) f ( x 0 ) (g∘f)' (x_0 )=L_2 L_1=g' (y_0 ) f' (x_0 )

发布了77 篇原创文章 · 获赞 14 · 访问量 2814

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/102741146