陶哲轩实分析(上)9.8及习题-Analysis I 9.8

这一节讲单调函数,虽然也很短,但单调函数性质很好,易应用,给出的两个例子一个是反函数的存在性(在讲反函数微分时会用到),另一个是构建n次方根的alternative method。习题不错

Exercise 9.8.1

If a < b a<b and f : [ a , b ] R f:[a,b]→\mathbf R is a monotonic function on [ a , b ] [a,b] , then suppose first f f is monotonic increasing, we have f ( b ) f ( x ) , x [ a , b ] f(b)≥f(x),∀x∈[a,b] , and f ( a ) f ( x ) , x [ a , b ] f(a)≤f(x),∀x∈[a,b] , so f f attain its maximum at b b and its minimum at a a , if f f is strictly increasing, the proof is the same.
Suppose next that f f is monotonic decreasing, we have f ( a ) f ( x ) , x [ a , b ] f(a)≥f(x),∀x∈[a,b] , and f ( b ) f ( x ) , x [ a , b ] f(b)≤f(x),∀x∈[a,b] , so f f attain its maximum at a and its minimum at b b , if f f is strictly increasing, the proof is the same.

Exercise 9.8.2

Let f : [ 1 , 1 ] R f:[-1,1]→\mathbf R be defined as:
f ( x ) = { x , x [ 1 , 0 ) x + 1 , x [ 0 , 1 ] f(x)=\begin{cases}x,& x∈[-1,0)\\x+1,&x∈[0,1] \end{cases}
Then f f is strictly monotone (thus monotone), f ( 1 ) = 1 f(-1)=-1 and f ( 1 ) = 2 f(1)=2 , but no element in [ 1 , 1 ] [-1,1] could make f ( x ) = 1 / 2 f(x)=1/2 .

Exercise 9.8.3

We shall divide into three cases: f ( a ) = f ( b ) , f ( a ) < f ( b ) , f ( a ) > f ( b ) f(a)=f(b),f(a)<f(b),f(a)>f(b) . The first case is obviously a contradiction to f f is one-to-one. So we only consider the last two cases.
Case f ( a ) < f ( b ) f(a)<f(b) . Assume we can find x < y [ a , b ] x<y∈[a,b] s.t. f ( x ) f ( y ) f(x)≥f(y) , since f f is one-to-one we can’t have f ( x ) = f ( y ) f(x)=f(y) , so we can only assume f ( x ) > f ( y ) f(x)>f(y) . Since x < y x<y , we have y a y≠a . So if f ( a ) > f ( y ) f(a)>f(y) , then f ( y ) < f ( a ) < f ( b ) f(y)<f(a)<f(b) , by the intermediate value theorem, c [ y , b ] ∃c∈[y,b] , s.t. f ( c ) = f ( a ) f(c)=f(a) , this contradicts the fact that f f is one-to-one. If f ( a ) < f ( y ) f(a)<f(y) , then f ( a ) < f ( y ) < f ( x ) f(a)<f(y)<f(x) , by the intermediate value theorem, c [ a , x ] ∃c∈[a,x] , s.t. f ( c ) = f ( y ) f(c)=f(y) , this again contradicts the fact that f f is one-to-one. So x < y [ a , b ] , f ( x ) < f ( y ) ∀x<y∈[a,b],f(x)<f(y) , thus f f is strictly increasing.
Case f ( a ) > f ( b ) f(a)>f(b) can be similarly proved. In this case f f is strictly decreasing.
In conclusion f f is strictly monotone.

Exercise 9.8.4

f f is strictly monotone increasing means f ( a ) < f ( b ) f(a)<f(b) , and for x , y [ a , b ] , f ( x ) < f ( y ) ∀x,y∈[a,b],f(x)<f(y) , thus f f is injective. By the intermediate value theorem, y [ f ( a ) , f ( b ) ] , c [ a , b ] , f ( c ) = y ∀y∈[f(a),f(b)],∃c∈[a,b],f(c)=y , thus f f is surjective. In conclusion f f is a bijection from [ a , b ] [a,b] to [ f ( a ) , f ( b ) ] [f(a),f(b)] .

To prove f 1 f^{-1} is continuous on [ f ( a ) , f ( b ) ] [f(a),f(b)] , choose some y 0 [ f ( a ) , f ( b ) ] y_0∈[f(a),f(b)] , then x 0 [ a , b ] , f ( x 0 ) = y 0 ∃x_0∈[a,b],f(x_0 )=y_0 . Now for ϵ > 0 ∀ϵ>0 , let
δ = { min { y 0 f ( a ) , f ( x 0 + ϵ ) y 0 } , a x 0 < a + ϵ min { y 0 f ( x 0 ϵ ) , f ( x 0 + ϵ ) y 0 } , a + ϵ x 0 b ϵ min { y 0 f ( x 0 ϵ ) , f ( b ) y 0 } , b ϵ < x 0 b δ=\begin{cases}\min⁡\{y_0-f(a),f(x_0+ϵ)-y_0 \},&a≤x_0<a+ϵ\\ \min⁡\{y_0-f(x_0-ϵ),f(x_0+ϵ)-y_0 \},&a+ϵ≤x_0≤b-ϵ\\ \min⁡\{y_0-f(x_0-ϵ),f(b)-y_0 \}, & b-ϵ<x_0≤b\end{cases}
Then as long as y [ f ( a ) , f ( b ) ] , y y 0 < δ y∈[f(a),f(b)],|y-y_0 |<δ , we can have
f 1 ( y ) f 1 ( y 0 ) = f 1 ( y ) x 0 < ϵ |f^{-1} (y)-f^{-1} (y_0)|=|f^{-1} (y)-x_0 |<ϵ
Thus f 1 f^{-1} is continuous.

To prove f 1 f^{-1} is monotonic increasing on [ f ( a ) , f ( b ) ] [f(a),f(b)] , let y 1 , y 2 [ f ( a ) , f ( b ) ] , y 1 < y 2 ∀y_1,y_2∈[f(a),f(b)],y_1<y_2 , then x 1 , x 2 [ a , b ] ∃x_1,x_2∈[a,b] , s.t. f ( x 1 ) = y 1 , f ( x 2 ) = y 2 f(x_1 )=y_1,f(x_2 )=y_2 . Now we must have x 1 < x 2 x_1<x_2 , otherwise contradicting f f being strictly monotone increasing. This means f 1 ( y 1 ) < f 1 ( y 2 ) f^{-1} (y_1 )<f^{-1} (y_2 ) .

If the continuity assumption is dropped, the proposition is false, a counterexample may be
f : [ 0 , 2 ] [ 0 , 3 ] { x , x [ 0 , 1 ) x + 1 , x [ 1 , 2 ] f:[0,2]→[0,3]≔\begin{cases}x,& x∈[0,1)\\x+1,& x∈[1,2] \end{cases}
which is not a surjection to [ 0 , 3 ] [0,3] . The inverse f 1 f^{-1} exists but is not continuous.

If strict monotonicity is replaced by monotonicity, the proposition is false, a counterexample may be
f : [ 0 , 2 ] R 1 , x [ 0 , 2 ] f:[0,2]→\mathbf R≔1,\quad x∈[0,2]
which is not an injection, and f 1 f^{-1} doesn’t exist.

To deal with strict monotone decreasing functions, we shall modify the proposition like this:
Let a < b a<b be real numbers, and let f [ a , b ] R f∶[a,b]→\mathbf R be a function which is both continuous and strictly monotone decreasing. Then f f is a bijection from [ a , b ] [a,b] to [ f ( b ) , f ( a ) ] [f(b),f(a)] , and the inverse f 1 [ f ( b ) , f ( a ) ] [ a , b ] f^{-1} ∶[f(b),f(a)]→[a,b] is also continuous and strictly monotone decreasing.

Exercise 9.8.5

( a ) Given x 1 , x 2 R ∀x_1,x_2∈\mathbf R , we can find q Q , x 1 < q < x 2 q∈\mathbf Q,x_1<q<x_2 , thus n 0 N , q = q ( n 0 ) ∃n_0∈\mathbf N,q=q(n_0) , so g ( q ) = 2 n 0 > 0 g(q)=2^{-n_0 }>0 . We have
f ( x 2 ) = r Q : r < x 2 g ( r ) = r Q : r < x 1 g ( r ) + r Q : x 1 r < x 2 g ( r ) f ( x 1 ) + g ( q ) > f ( x 1 ) f(x_2 )=∑_{r∈\mathbf Q:r<x_2}g(r)=∑_{r∈\mathbf Q:r<x_1}g(r)+∑_{r∈\mathbf Q:x_1≤r<x_2}g(r) ≥f(x_1 )+g(q)>f(x_1)

( b ) r Q , n N , r = q ( n ) ∀r∈\mathbf Q,∃n∈\mathbf N,r=q(n) . So given this r r , for x > r ∀x>r :
f ( x ) = a Q : a < x g ( a ) = a Q : a < r g ( a ) + a Q : r a < x g ( a ) = f ( r ) + a Q : r a < x g ( a ) f ( r ) + g ( r ) = f ( r ) + 2 ( n ) \begin{aligned} f(x)&=∑_{a∈\mathbf Q:a<x}g(a)=∑_{a∈\mathbf Q:a<r}g(a)+∑_{a∈\mathbf Q:r≤a<x}g(a)=f(r)+∑_{a∈\mathbf Q:r≤a<x}g(a)\\&≥f(r)+g(r)=f(r)+2^(-n)\end{aligned}
By the comparison principle we have f ( r + ) f ( r ) + 2 n f(r+)≥f(r)+2^{-n} , thus f ( r + ) f ( r ) f(r+)≠f(r) , use Proposition 9.5.3 we can conclude f f is not continuous at r r .

( c ) First, we show f n ( x ) f_n (x) is continuous at irrational x x . Since there’s at most n n rationals r r which could satisfy g ( r ) 2 n g(r)≥2^{-n} , we name them r 1 , , r n r_1,…,r_n , then it’s able to choose
δ = min x r i > 0 , 1 i n δ=\min⁡|x-r_i |>0,\quad 1≤i≤n
We conclude f n ( y ) f_n (y) remains constant for any y ( x δ , x + δ ) y∈(x-δ,x+δ) , thus f n f_n is continuous at x x . Also, notice that
f ( x ) f n ( x ) = r Q : r < x ;   g ( r ) < 2 n g ( r ) k = n + 1 2 k = 2 n |f(x)-f_n (x)|=∑_{r∈\mathbf Q:r<x;{\ }g(r)<2^{-n}}g(r)≤∑_{k=n+1}^∞2^{-k} =2^{-n}

Now for ϵ > 0 ∀ϵ>0 , choose n n s.t. 2 n < ϵ / 2 2^{-n}<ϵ/2 , and for this n n choose δ δ s.t.
( x δ , x + δ ) { r Q : g ( r ) 2 n } = (x-δ,x+δ)∩\{r∈\mathbf Q:g(r)≥2^{-n} \}=∅
Then if y ( x δ , x + δ ) y∈(x-δ,x+δ) , we can conclude f n ( y ) = f n ( x ) f_n (y)=f_n (x) , also
f ( y ) f n ( y ) = r Q : r < y ,   g ( r ) < 2 n g ( r ) k = n + 1 2 k = 2 n |f(y)-f_n (y)|=∑_{r∈\mathbf Q:r<y,{\ }g(r)<2^{-n}}g(r)≤∑_{k=n+1}^∞ 2^{-k} =2^{-n}
So we can have
f ( y ) f ( x ) f ( y ) f n ( y ) + f n ( y ) f ( x ) = f ( y ) f n ( y ) + f n ( x ) f ( x ) 2 n + 2 n < ϵ 2 + ϵ 2 = ϵ , y ( x δ , x + δ ) \begin{aligned} |f(y)-f(x)|&≤|f(y)-f_n (y)|+|f_n (y)-f(x)|=|f(y)-f_n (y)|+|f_n (x)-f(x)|\\&≤2^{-n}+2^{-n}<\frac{ϵ}{2}+\frac{ϵ}{2}=ϵ,\quad ∀y∈(x-δ,x+δ) \end{aligned}
This proves f f is continuous at x x .

发布了77 篇原创文章 · 获赞 14 · 访问量 2817

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/102709260
9.8