中科大-凸优化 笔记(lec31)-Lagrange对偶(三)

全部笔记的汇总贴(视频也有传送门):中科大-凸优化

一、对任意优化问题

( P ) min ⁡ f 0 ( x ) s . t .    f i ( x ) ≤ 0 , i = 1 , ⋯   , m        ( P ∗ ) h i ( x ) = 0 , i = 1 , ⋯   , P L ( x , λ , v ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 P v i h i ( x ) g ( λ , v ) = inf ⁡ x ∈ D L ( x , λ , v ) (P)\min f_0(x)\\s.t.\;f_i(x)\le0,i=1,\cdots,m\;\;\;(P^*)\\h_i(x)=0,i=1,\cdots,P\\L(x,\lambda,v)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^Pv_ih_i(x)\\g(\lambda,v)=\inf_{x\in D}L(x,\lambda,v) (P)minf0(x)s.t.fi(x)0,i=1,,m(P)hi(x)=0,i=1,,PL(x,λ,v)=f0(x)+i=1mλifi(x)+i=1Pvihi(x)g(λ,v)=xDinfL(x,λ,v)

( D ) max ⁡ g ( λ , v ) s . t .    λ ≥ 0 R m + P            d ∗ (D)\max g(\lambda,v)\\s.t.\;\lambda\ge0\\\R^{m+P}\;\;\;\;\;d^* (D)maxg(λ,v)s.t.λ0Rm+Pd

  1. 对偶问题一定是凸优化问题
  2. d ∗ ≤ P ∗ d^*\le P^* dP (weak duality,一定成立)
    d ∗ = P ∗ d^*=P^* d=P (strong duality)
    P ∗ − d ∗ P^*-d^* Pd (duality gap)

D的Relative Interior(相对内部)

Relint D= { x ∈ D ∣ ∃ r > 0 , B ( x , r ) ∩ a f f D ≤ D } \{ x\in D|\exists r>0,B(x,r)\cap aff D\le D\} { xDr>0,B(x,r)affDD}
在这里插入图片描述

Slater’s Condition ( P ∗ = d ∗ P^*=d^* P=d的充分条件)

若有凸问题 min ⁡ f 0 ( x ) s . t . f i ( x ) ≤ 0 , i = 1 , ⋯   , m , A x = b \min f_0(x)\\s.t. f_i(x)\le0,i=1,\cdots,m,Ax=b minf0(x)s.t.fi(x)0,i=1,,m,Ax=b其中 f i ( x ) f_i(x) fi(x)为凸, ∀ i \forall i i,当 ∃ x ∈ r e l i n t D \exist x\in relint D xrelintD,使 f i ( x ) ≤ 0 , i = 1 , ⋯   , m , A x = b f_i(x)\le0,i=1,\cdots,m,Ax=b fi(x)0,i=1,,m,Ax=b满足时, P ∗ = d ∗ P^*=d^* P=d

A weaker Slater’s Condition(充分条件)

若不等式约束为仿射时,只要可行域非空,必有 P ∗ = d ∗ P^*=d^* P=d
c x + d ≤ 0 ( 半 空 间 )            c x + d = 0 ( 超 平 面 )                  A x = b cx+d\le0(半空间)\;\;\;\;\;cx+d=0(超平面)\;\;\;\;\;\;\;\;Ax=b cx+d0()cx+d=0()Ax=b
r e l i n t D = r e l i n t { d o m    f 0 ∩ ∩ i d o m    f i } = r e l i n t { d o m    f 0 } relint D=relint\{dom\;f_0\cap \cap_idom\;f_i\}\\=relint\{dom\;f_0\} relintD=relint{ domf0idomfi}=relint{ domf0}

线性规划问题若可行,必有 P ∗ = d ∗ P^*=d^* P=d

例:

min ⁡ X T X s . t . A X = b ( P ∗ = d ∗ ) ⇔ ( D ) max ⁡ v − 1 4 V T A A T V − b T V \min X^TX\\s.t. AX=b\\(P^*=d^*)\\\Leftrightarrow(D)\max_v-\frac14V^TAA^TV-b^TV minXTXs.t.AX=b(P=d)(D)vmax41VTAATVbTV

例:QCQP

{ min ⁡ 1 2 X T P 0 X + q 0 T X + r 0 s . t . 1 2 X T P i X + q i T X + r i ≤ 0 , i = 1 , ⋯   , m P 0 ∈ S + + n , P i ∈ S + n ⇒ L ( x , λ ) = 1 2 X T P 0 X + q 0 T X + r 0 + ∑ i = 1 m ( 1 2 λ i X T P i X + λ i q i T X + λ i r i ) = 1 2 X T ( P 0 + ∑ i = 1 m λ i P i ) X + ( q 0 + ∑ i = 1 m λ i q i ) T X + ( r 0 + ∑ i = 1 m λ i r i ) ⇒ g ( λ ) = inf ⁡ x L ( x , λ ) ( λ ≥ 0 ) = − 1 2 Q T ( λ ) P − 1 ( λ ) Q ( λ ) + R ( λ ) { max ⁡ − 1 2 Q T ( λ ) P − 1 ( λ ) Q ( λ ) + R ( λ ) s . t .    λ ≥ 0 ∃ x ∈ D = R n ; 1 2 X T P i X + q i X + r i < 0 , i = 1 , ⋯   , m 则 P ∗ + d ∗ 若 q i = 0 , r i = 0 , 1 2 X T P i X < 0 , 此 时 P ∗ = d ∗ = 0 \left\{ \begin{array}{l} \min \frac12X^TP_0X+q_0^TX+r_0 \\ \\s.t. \frac12X^TP_iX+q_i^TX+r_i\le0,i=1,\cdots,m \end{array} \right.\\P_0\in S_{++}^n,P_i\in S_+^n \\\Rightarrow L(x,\lambda)=\frac12X^TP_0X+q_0^TX+r_0+\sum_{i=1}^m(\frac12\lambda_iX^TP_iX+\lambda_iq_i^TX+\lambda_ir_i)\\=\frac12X^T(P_0+\sum_{i=1}^m\lambda_iP_i)X+(q_0+\sum_{i=1}^m\lambda_iq_i)^TX+(r_0+\sum_{i=1}^m\lambda_ir_i)\\\Rightarrow g(\lambda)=\inf_x L(x,\lambda)\\(\lambda\ge0)=-\frac12Q^T(\lambda)P^{-1}(\lambda)Q(\lambda)+R(\lambda)\\\left\{ \begin{array}{l} \max -\frac12Q^T(\lambda)P^{-1}(\lambda)Q(\lambda)+R(\lambda) \\ \\s.t.\;\lambda\ge0 \end{array} \right.\\\exist x\in D=\R^n;\frac12X^TP_iX+q_iX+r_i<0,i=1,\cdots,m则P^*+d^*\\若q_i=0,r_i=0,\frac12X^TP_iX<0,此时P^*=d^*=0 min21XTP0X+q0TX+r0s.t.21XTPiX+qiTX+ri0,i=1,,mP0S++n,PiS+nL(x,λ)=21XTP0X+q0TX+r0+i=1m(21λiXTPiX+λiqiTX+λiri)=21XT(P0+i=1mλiPi)X+(q0+i=1mλiqi)TX+(r0+i=1mλiri)g(λ)=xinfL(x,λ)(λ0)=21QT(λ)P1(λ)Q(λ)+R(λ)max21QT(λ)P1(λ)Q(λ)+R(λ)s.t.λ0xD=Rn;21XTPiX+qiX+ri<0,i=1,,mP+dqi=0,ri=0,21XTPiX<0,P=d=0

下一章传送门:中科大-凸优化 笔记(lec32)- P ∗ = d ∗ P^*=d^* P=d的几种解释

猜你喜欢

转载自blog.csdn.net/qq_41485273/article/details/113933532