中科大-凸优化 笔记(lec14)-保凸运算

全部笔记的汇总贴(视频也有传送门):中科大-凸优化

一、保持函数凸性

非负加权和: f 1 , ⋯   , f n f_1,\cdots,f_n f1,,fn为凸,则 f = ∑ i = 1 m w i f i f=\sum_{i=1}^mw_if_i f=i=1mwifi为凸,若 w i ≥ 0 , ∀ i w_i\ge0,\forall i wi0,i
1.定义域是凸集 2.不等式

f ( x , y ) f(x,y) f(x,y),对任意 y ∈ A , f ( x , y ) y\in A,f(x,y) yA,f(x,y)均为凸 ( x , y )          j o i n t l y    c o n v e x (x,y)\;\;\;\;jointly\;convex (x,y)jointlyconvex

w ( y ) ≥ 0 , ∀ y ∈ A , g ( x ) = ∫ y ∈ A w ( y ) f ( x , y ) d y w(y)\ge 0,\forall y\in A,g(x)=\int_{y\in A}w(y)f(x,y){d}y w(y)0,yA,g(x)=yAw(y)f(x,y)dy为凸

仿射映射: f : R n → R , A ∈ R n ∗ m , b ∈ R n , g ( x ) = f ( A x + b )      d o m    g = { x ∣ A x + b ∈ d o m f } f:\R^n\rightarrow\R,A\in\R^{n*m},b\in\R^n,g(x)=f(Ax+b)\;\;dom \;g=\{x|Ax+b\in dom f\} f:RnR,ARnm,bRn,g(x)=f(Ax+b)domg={ xAx+bdomf}

证明:令 x , y ∈ d o m    g , 0 ≤ θ ≤ 1 x,y\in dom\;g,0\le\theta\le1 x,ydomg,0θ1
g ( θ x + ( 1 − θ ) y ) = f ( θ A x + ( 1 − θ ) A y + b ) = f ( θ ( A x + b ) + ( 1 − θ ) ( A y + b ) ) ≤ θ f ( A x + b ) + ( 1 − θ ) f ( A y + b ) = θ g ( x ) + ( 1 − θ ) g ( y ) g(\theta x+(1-\theta)y)=f(\theta Ax+(1-\theta)Ay+b)\\=f(\theta(Ax+b)+(1-\theta)(Ay+b))\\\le\theta f(Ax+b)+(1-\theta)f(Ay+b)\\=\theta g(x)+(1-\theta)g(y) g(θx+(1θ)y)=f(θAx+(1θ)Ay+b)=f(θ(Ax+b)+(1θ)(Ay+b))θf(Ax+b)+(1θ)f(Ay+b)=θg(x)+(1θ)g(y)

f i : R n → R , i = 1 , ⋯   , m f_i:\R^n\rightarrow\R,i=1,\cdots,m fi:RnR,i=1,,m为凸, A ∈ R n , b ∈ R , g ( x ) = A T [ f 1 ( x ) ⋯ f m ( x ) ] T + b A\in\R^n,b\in\R,g(x)=A^T[f_1(x)\cdots f_m(x)]^T+b ARn,bR,g(x)=AT[f1(x)fm(x)]T+b

A A A如果非负,是凸函数

二、两个函数的极大值函数

f 1 , f 2 f_1,f_2 f1,f2是凸函数,定义: f ( x ) = max ⁡ { f 1 ( x ) , f 2 ( x ) } , d o m f = d o m f 1 ∩ d o m f 2 f(x)=\max\{f_1(x),f_2(x)\},dom f=dom f_1\cap dom f_2 f(x)=max{ f1(x),f2(x)},domf=domf1domf2

x , y ∈ d o m f , 0 ≤ θ ≤ 1 x,y\in dom f,0\le\theta\le1 x,ydomf,0θ1
f ( θ x + ( 1 − θ ) y ) = max ⁡ { f 1 ( θ x + ( 1 − θ ) y ) , f 2 ( θ x + ( 1 − θ ) y ) } ≤ max ⁡ { θ f 1 ( x ) + ( 1 − θ ) f 1 ( y ) , θ f 2 ( x ) + ( 1 − θ ) f ( y ) } ≤ max ⁡ { θ f 1 ( x ) , θ f 2 ( x ) } + max ⁡ { ( 1 − θ ) f 1 ( y ) , ( 1 − θ ) f 2 ( y ) } = θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x+(1-\theta)y)=\max\{f_1(\theta x+(1-\theta)y),f_2(\theta x+(1-\theta)y)\}\\\le\max\{\theta f_1(x)+(1-\theta) f_1(y),\theta f_2(x)+(1-\theta)f(y)\}\\\le\max\{\theta f_1(x),\theta f_2(x)\}+\max\{(1-\theta)f_1(y),(1-\theta)f_2(y)\}\\=\theta f(x)+(1-\theta)f(y) f(θx+(1θ)y)=max{ f1(θx+(1θ)y),f2(θx+(1θ)y)}max{ θf1(x)+(1θ)f1(y),θf2(x)+(1θ)f(y)}max{ θf1(x),θf2(x)}+max{ (1θ)f1(y),(1θ)f2(y)}=θf(x)+(1θ)f(y)

max ⁡ { a + b , c + d } ≤ max ⁡ { a , c } + max ⁡ { b , d } \max\{a+b,c+d\}\le\max\{a,c\}+\max\{b,d\} max{ a+b,c+d}max{ a,c}+max{ b,d}

例: f ( x ) = max ⁡ { x 2 , x } f(x)=\max\{x^2,x\} f(x)=max{ x2,x}

在这里插入图片描述

例:向量中 r r r个最大元素的和

x ∈ R n          x [ i ] → 第 i 大 的 元 素 x\in\R^n\;\;\;\;x[i]\rightarrow第i大的元素 xRnx[i]i
x [ 1 ] ≥ x [ 2 ] ≥ ⋯ ≥ x [ r ] ≥ ⋯ ≥ x [ n ] x[1]\ge x[2]\ge\cdots\ge x[r]\ge\cdots\ge x[n] x[1]x[2]x[r]x[n]
f ( x ) = ∑ i = 1 r x [ i ] f ( x ) = max ⁡ { x i 1 + ⋯ + x i r ∣ 1 ≤ i 1 ≤ ⋯ ≤ i r ≤ n } f(x)=\sum_{i=1}^rx[i]\\f(x)=\max\{x_{i1}+\cdots+x_{ir}|1\le i_1\le\cdots\le i_r\le n\} f(x)=i=1rx[i]f(x)=max{ xi1++xir1i1irn}

三、无限个凸函数的极大值

f ( x , y ) f(x,y) f(x,y)对于 x x x为凸, ∀ y ∈ A \forall y\in A yA
g = sup ⁡ y ∈ A f ( x , y ) g=\sup_{y\in A}f(x,y) g=yAsupf(x,y)

例:实对称矩阵的最大特征值

f ( x ) = λ m a x ( x ) , d o m f = S m X y = λ y ⇔ y T X y = y T λ y ⇔ y T X y = λ ∣ ∣ y ∣ ∣ 2 2 ⇔ λ = y T X y ∣ ∣ y ∣ ∣ 2 2 f(x)=\lambda_{max}(x),dom f=S^m\\Xy=\lambda y\Leftrightarrow y^TXy=y^T\lambda y\\\Leftrightarrow y^TXy=\lambda ||y||_2^2\\\Leftrightarrow \lambda=\frac{y^TXy}{||y||^2_2} f(x)=λmax(x),domf=SmXy=λyyTXy=yTλyyTXy=λy22λ=y22yTXy

其中 λ = y X y , ∣ ∣ y ∣ ∣ 2 = 1 \lambda=y^Xy,||y||_2=1 λ=yXy,y2=1

所以 λ m a x ( x ) = sup ⁡ { y T X y ⏟ 对 X 是 凸 函 数 ∣    ∣ ∣ y ∣ ∣ 2 = 1 } \lambda_{max}(x)=\sup\{\underset{对X是凸函数}{\underbrace{y^TXy}}\Big|\;||y||_2=1\} λmax(x)=sup{ X yTXyy2=1}

下一章传送门:中科大-凸优化 笔记(lec15)-保持函数凸性的操作

猜你喜欢

转载自blog.csdn.net/qq_41485273/article/details/113739212