霍尔德(Hölder)不等式

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/itnerd/article/details/83446816

引理

p , q > 0 1 p + 1 q = 1. p,q>0,\frac1p+\frac1q=1. x 1 p y 1 q x p + y q ,       x , y 0 , x^{\frac1p}y^{\frac1q} \leq \frac xp+ \frac yq,\;\forall\;x,y\geq 0, 等号仅当 x = y x=y 时成立。


证明:

考察对数函数 l o g ( x ) log(x) ,她显然是一个凹函数: l o g ( θ x + ( 1 θ ) y ) θ l o g ( x ) + ( 1 θ ) l o g ( y ) log(\theta x+(1-\theta)y) \geq \theta log(x) +(1-\theta)log(y) θ = 1 p \theta = \frac1p ,则 1 θ = 1 q 1-\theta = \frac1q ,故 l o g ( 1 p x + 1 q y ) 1 p l o g ( x ) + 1 q l o g ( y ) log(\frac1p x+\frac1qy) \geq \frac1p log(x) +\frac1qlog(y) 两边同时去指数,得 x p + y q x 1 p y 1 q \frac xp+ \frac yq \geq x^{\frac1p}y^{\frac1q}


Hölder 不等式

对引理中的不等式,做如下替换 x i = a i p j = 1 n a j p ,      y i = b i q j = 1 n b j q x_i = \frac{a_i^p}{\sum_{j=1}^{n}a_j^p},\;\;y_i = \frac{b_i^q}{\sum_{j=1}^{n}b_j^q} 得到 n 个不等式: a i b i ( j = 1 n a j p ) 1 p ( j = 1 n b j q ) 1 q 1 p a i p j = 1 n a j p + 1 q b i q j = 1 n b j q \frac{a_ib_i}{(\sum_{j=1}^{n}a_j^p)^{\frac1p}(\sum_{j=1}^{n}b_j^q)^{\frac1q}} \leq \frac1p\frac{a_i^p}{\sum_{j=1}^{n}a_j^p}+\frac1q\frac{b_i^q}{\sum_{j=1}^{n}b_j^q} 将上式两边对 i = 1 , 2 , , n i=1,2,···,n 求和,就得到 i = 1 n a i b i ( j = 1 n a j p ) 1 p ( j = 1 n b j q ) 1 q 1 p + 1 q = 1 , \frac{\sum_{i=1}^{n}a_ib_i}{(\sum_{j=1}^{n}a_j^p)^{\frac1p}(\sum_{j=1}^{n}b_j^q)^{\frac1q}} \leq \frac1p+\frac1q = 1, i = 1 n a i b i ( j = 1 n a j p ) 1 p ( j = 1 n b j q ) 1 q \Rightarrow\sum_{i=1}^{n}a_ib_i \leq (\sum_{j=1}^{n}a_j^p)^{\frac1p}(\sum_{j=1}^{n}b_j^q)^{\frac1q}
上式要求 a i , b i 0 a_i,b_i \geq 0 。否则,需要给等式右端的 a i , b i a_i,b_i 加上绝对值,得到如下不等式: a T b a p b q a^Tb \leq ||a||_p||b||_q 事实上, q ||·||_q 正是 p ||·||_p 对偶范数

猜你喜欢

转载自blog.csdn.net/itnerd/article/details/83446816