不等式习题


\(\fbox{例1}\)【2017宝中训练题】
若点\(P(cos\theta,sin\theta)\)在直线\(\cfrac{x}{a}+\cfrac{y}{b}=1\)上,则下列不等式正确的是()。
A、\(a^2+b^2\leq 1\) \(\hspace{2cm}\) B、\(a^2+b^2\ge 1\) \(\hspace{2cm}\) C、\(\cfrac{1}{a^2}+\cfrac{1}{b^2}\leq 1\) \(\hspace{2cm}\) D、 \(\cfrac{1}{a^2}+\cfrac{1}{b^2}\ge 1\)

法1:三角函数的有界性,由于点\(P(cos\theta,sin\theta)\)在直线\(\cfrac{x}{a}+\cfrac{y}{b}=1\)上,则有\(bcos\theta+asin\theta=ab\),即\(\sqrt{a^2+b^2}sin(\theta+\phi)=ab,tan\phi=\cfrac{b}{a}\),由三角函数的有界性可知\(|sin(\theta+\phi)|=|\cfrac{ab}{\sqrt{a^2+b^2}}|\leq 1\),即\(\cfrac{\sqrt{a^2+b^2}}{|ab|}\ge 1\),即\(\cfrac{1}{a^2}+\cfrac{1}{b^2}\ge 1\),故选D.

法2:数形结合,由已知可知点\(P\)在单位圆上,自己做出大致图像可知,直线和圆的位置关系只能是相切和相交,故圆心\((0,0)\)到直线\(bx+ay-ab=0\)的距离应该小于等于半径1,即\(\cfrac{|b\cdot 0+a\cdot 0-ab|}{\sqrt{a^2+b^2}}\leq 1\),化简得\(\cfrac{1}{a^2}+\cfrac{1}{b^2}\ge 1\),故选D.

\(\fbox{例2}\)
\(a>b>1\)\(a+\cfrac{1}{a}>b+\cfrac{1}{b}\)的(充分不必要)条件。

法1:常规用做差法,由已知可知\(ab-1>0,aa-b>0\)\(a+\cfrac{1}{a}-b-\cfrac{1}{b}=a-b-\cfrac{a-b}{ab}=(a-b)\cfrac{ab-1}{ab}>0\),即\(a+\cfrac{1}{a}>b+\cfrac{1}{b}\),故充分性成立;当\(a=\cfrac{1}{4},b=\cfrac{1}{2}\)时,满足\(a+\cfrac{1}{a}>b+\cfrac{1}{b}\),但不能得到\(a>b>1\),故必要性不成立。

法2:巧解构造函数法,令\(f(x)=x+\cfrac{1}{x}\),则原题目变形为\(a>b>1\)\(f(a)>f(b)\)的什么条件,结合对勾函数的图像很容易判断。

\(\fbox{例3}\)
已知\(x^2+y^2\leq 1\),求\(|2x+y-2|+|x+3y-6|\)的最小值?


思路一:从形入手思考,转化为点线距;

我们发现\(|2x+y-2|+|x+3y-6|=\sqrt{5}\cfrac{|2x+y-2|}{\sqrt{5}}+\sqrt{10}\cfrac{|x+3y-6|}{\sqrt{10}}\)

其中表达式\(\cfrac{|2x+y-2|}{\sqrt{5}}\)\(\cfrac{|x+3y-6|}{\sqrt{10}}\)分别表示圆内及圆上的动点

到两条直线的距离,所以可以把“数”的问题转化为“形”的问题。

扫描二维码关注公众号,回复: 2906504 查看本文章

思路二:三角代换,令\(x=R\cos\theta,y=R\sin\theta,R\in[0,1]\)

\(|2x+y-2|+|x+3y-6|\ge|3R\cos\theta+4R\sin\theta-8|=|5R\sin(\theta+\phi)-8|\)

\(\fbox{例4}\)【分子有理化、分母有理化】

已知\(a=\sqrt{2}\)\(b=\sqrt{7}-\sqrt{3}\)\(c=\sqrt{6}-\sqrt{2}\),比较\(a、b、c\)的大小。

分析:\(b=\sqrt{7}-\sqrt{3}=\cfrac{\sqrt{7}-\sqrt{3}}{1}=\cfrac{4}{\sqrt{7}+\sqrt{3}}\)

\(c=\sqrt{6}-\sqrt{2}=\cfrac{\sqrt{6}-\sqrt{2}}{1}=\cfrac{4}{\sqrt{6}+\sqrt{2}}\)

由于\(\sqrt{7}+\sqrt{3}>\sqrt{6}+\sqrt{2}\),故\(\cfrac{4}{\sqrt{7}+\sqrt{3}}<\cfrac{4}{\sqrt{6}+\sqrt{2}}\)

\(b<c\)

\(\sqrt{2}(\sqrt{6}+\sqrt{2})=2\sqrt{3}+2>4\),故\(\sqrt{2}>\cfrac{4}{\sqrt{6}+\sqrt{2}}\)

\(c<a\),故\(b<c<a\)

\(\fbox{例5}\)【】

在锐角\(\Delta ABC\)中,内角\(A、B、C\)的对边分别是\(a、b、c\),且满足\((a-b)(sinA+sinB)=(c-b)sinC\),若\(a=\sqrt{3}\),则\(b^2+c^2\)的取值范围是【】

\(A.(3,6]\). \(B.(3,5)\). \(C.(5,6]\). \(D.[5,6]\).

【法1】不等式法,

【法2】三角函数法,由已知和正弦定理可知,

\((a-b)(a+b)=(c-b)c\),即\(bc=b^2+c^2-a^2\)

\(cosA=\cfrac{1}{2}\),由\(A\in (0,\pi)\),可知\(a=\cfrac{\pi}{3}\)

猜你喜欢

转载自www.cnblogs.com/wanghai0666/p/7350948.html