Karamata 不等式

在数学,Karamata不等式,后命名乔文·卡拉马塔,也被称为优化不等式,用于处理定义在实数区间的的实值函数。它推广了Jensen不等式的离散形式,并反过来推广了Schur-凸函数的概念。
最近处理不等式的时候反复碰到,故归纳之.

定理(英文描述)
Let I I be an interval of the real line and let f f denote a real-valued, convex function defined on I I . If x 1 , . . . , x n x_1, . . . , x_n and y 1 , . . . , y n y_1, . . . , y_n are numbers in I I such that ( x 1 , . . . , x n ) (x_1, . . . , x_n) majorizes ( y 1 , . . . , y n ) (y_1, . . . , y_n) , then
f ( x 1 ) + + f ( x n ) f ( y 1 ) + + f ( y n ) . {\displaystyle f(x_{1})+\cdots +f(x_{n})\geq f(y_{1})+\cdots +f(y_{n}).} (1)

Here majorization means that x 1 , . . . , x n x_1, . . . , x_n and y 1 , . . . , y n y_1, . . . , y_n satisfies x 1 x 2 x n {\displaystyle x_{1}\geq x_{2}\geq \cdots \geq x_{n}} and y 1 y 2 y n {\displaystyle y_{1}\geq y_{2}\geq \cdots \geq y_{n}}
and we have the inequalities
x 1 + + x i y 1 + + y i {\displaystyle x_{1}+\cdots +x_{i}\geq y_{1}+\cdots +y_{i}} for all i 1 , . . . , n 1 i ∈ {1, . . . , n − 1} .
and the equality x 1 + + x n = y 1 + + y n {\displaystyle x_{1}+\cdots +x_{n}=y_{1}+\cdots +y_{n}}
If f f  is a strictly convex function, then the inequality (1) holds with equality if and only if we have x i = y i x_i = y_i for all i 1 , . . . , n i ∈ {1, . . . , n} .

一道题:
x ( x a ( x 1 ) a ( x 1 2 ) a + ( x 3 2 ) a ) ( x 1 ) a + ( x 3 2 ) a + ( 1 2 a 1 ) ( ( x 3 2 ) a ( x 1 2 ) a ) > 0 -x \left(x^a-(x-1)^a-\left(x-\frac{1}{2}\right)^a+\left(x-\frac{3}{2}\right)^a\right)-(x-1)^a \\+\left(x-\frac{3}{2}\right)^a+\left(1-2^{a-1}\right) \left(\left(x-\frac{3}{2}\right)^a-\left(x-\frac{1}{2}\right)^a\right)>0
此时有 x 2 x\ge 2 1 < a < 0 -1<a<0 .

证明:
The inequality is written as f ( a , x ) + g ( a , x ) > 0 f(a, x) + g(a, x) > 0 where
f ( a , x ) = x 1 + a + ( x 1 ) 1 + a + ( x 1 / 2 ) 1 + a ( x 3 / 2 ) 1 + a f(a, x) = - x^{1+a} + (x-1)^{1+a} + (x-1/2)^{1+a} - (x-3/2)^{1+a} and
g ( a , x ) = ( 1 / 2 2 a 1 ) ( ( x 3 / 2 ) a ( x 1 / 2 ) a ) . g(a, x) = (1/2 - 2^{a-1})((x-3/2)^a - (x-1/2)^a). Clearly, g ( a , x ) > 0 g(a, x) > 0 . It suffices to prove that f ( a , x ) 0 f(a, x) \ge 0 .
Since x x 1 + a x \mapsto -x^{1+a} is convex on ( 0 , ) (0, \infty) , and ( x , x 3 / 2 ) (x, x - 3/2) majorizes ( x 1 / 2 , x 1 ) (x-1/2, x-1) , by using Karamata inequality, we have f ( a , x ) 0 f(a, x) \ge 0 . We are done.
2020年4月22日最后修改

原创文章 16 获赞 8 访问量 1213

猜你喜欢

转载自blog.csdn.net/zlc_abc/article/details/105470555