关于欧拉函数

欧拉函数: 对于正整数 n , 欧拉函数是小于等于 n 的数中与 n 互质的数的个数

性质1:p为素数则有\varphi(p) = p - 1

1~p-1都和p互素

性质2:对于互素的q, p,则有\varphi (p*q) = \varphi (p)*\varphi (q)

积性函数

性质3:p为素数,则\varphi(p^{a}) = p^{a} - p^{a-1}

 p^{a}只有一个素因子p,所以素因子中有p的数都不和 p^{a}互素,所以1~p^{a} - 1不和p^{a}互素的有p^{a}/p == p^{a-1} - 1

所以1~p^{a}-1中和p^{a}互素的有 p^{a} - 1 - (p^{a - 1} - 1) = p ^ {a} - p ^ {a - 1}

对于某个数 n

n = a_{1}^{p1} * a_{2}^{p2} * a_{3}^{p3} *....*a_{m}^{pm}

运用性质2,3化简\varphi(n)

 \varphi(n) = \varphi(a_1^{p_1}) * \varphi(a_2^{p_2})* \varphi(a_3^{p_3})...*\varphi(a_m^{p_m})

\varphi(n) = (a_1^{p_1} - a_1^{p_1 - 1}) * (a_2^{p_2} - a_2^{p_2 - 1}) *...*(a_m^{p_m} - a_m^{p_m - 1})

每个括号提出ai的pi次方, 相乘得n

\varphi(n) = n * (1 - a_1^{-1}) * (1 - a_2^{-1})*...(1 - a_m^{-1})

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1286

#include<bits/stdc++.h>
//#define DEBUG

using namespace std;

const int maxn = 1e5 + 50;

vector<pair<int,int>> M;

bool vis[maxn];

int n, m;

int EL(int x)
{
    if(x <= 3)
        return x - 1;
    int res = x;
    for(int i = 2; i * i <= x; i++)
    {
        if(x % i == 0)
        {
            while(x % i == 0)
                x /= i;
            res = res / i * (i - 1);
        }
    }
    if(x > 1) res = res / x * (x - 1);
    return res;
}

int32_t main()
{
    ios_base::sync_with_stdio(0);
    cin.tie(0); cout.tie(0);

    int T;
    cin >> T;
    while(T--)
    cin >> n, cout << EL(n) << endl;

    return 0;
}

区间求欧拉函数

引入性质1

如果p为素数 && i mod p = 0, 那么phi(i * p)=p * phi(i)

有上面的基础易知\varphi(i) = \varphi(p^{x} * ....p_m^{y}) = (p^{x} - p^{x - 1}) * ...* (p_m^{y} - p_m ^ {y-1})

\varphi(i*p) = \varphi(p^{x + 1} * ....p_m^{y}) = (p^{x + 1} - p^{x}) * ...* (p_m^{y} - p_m ^ {y-1}) = p*\varphi(i)

引入性质2

若p为素数 && i mod p ≠0,  那么phi(i * p)=phi(i) * (p-1)

和前面性质3一样

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2824

#include<bits/stdc++.h>
//#define DEBUG

using namespace std;

const int maxn = 3e6 + 10;

int n, m, cnt;
bool vis[maxn];
int pri[maxn];
int E[maxn];

int EL(int n)
{
    for(int i = 2; i < maxn; i++)
    {
        if(!vis[i]) pri[cnt++] = i, E[i] = i - 1;
        for(int j = 0; j < cnt; j++)
        {
            if(1LL * pri[j] * i > maxn)
                break;
            int tmp = pri[j] * i;
            vis[tmp] = 1;
            if(i % pri[j] == 0)
            {
                E[tmp] = E[i] * pri[j];
                break;
            }
            E[tmp] = E[i] * (pri[j] - 1);
        }
    }
}

int32_t main()
{
    ios_base::sync_with_stdio(0);
    cin.tie(0); cout.tie(0);

    EL(maxn);
    while(cin >> n >> m)
    {
        int64_t sum = 0;
        for(int i = n; i <= m; i++)
            sum += E[i];
        cout << sum << endl;
    }

    return 0;
}

猜你喜欢

转载自blog.csdn.net/k_ona/article/details/81139173