信号与系统(Python) 学习笔记 (6) 拉普拉斯变换 Laplace Transform

6. 拉普拉斯变换


6.1. 拉普拉斯变换 Laplace Transform

6.1.1 双边拉普拉斯变换的定义

  • 有些函数不满足绝对可积条件,求解傅里叶变换困难。为此,可用一衰减因 e σ t {\color{blue}e^{-\sigma t}} ( σ {\color{red}\sigma} 为实常数)乘信号 f ( t ) f(t) , 适当选取 σ \sigma 的值, 使乘积信号 f ( t ) e σ t f(t) e^{-\sigma t} t t\to \infty 时 信号幅度趋近于 0 0 , 从而使 f ( t ) e σ t f(t) e^{-\sigma t} 的傅里叶变换存在。
    F b ( σ + j ω ) = F [ f ( t ) e σ t ] = f ( t ) e σ t e j ω t d t = f ( t ) e ( σ + j ω ) t d t \begin{aligned}F_b ({\color{red}\sigma} + j \omega) & =\mathfrak{F}\big[ f(t) {\color{red}e^{-\sigma t} }\big] \\ & = \int^{\infty}_{-\infty}f(t) {\color{red}e^{-\sigma t}} e^{-j\omega t}dt \\ & = \int^{\infty}_{-\infty}f(t) e^{-({\color{red}\sigma} + j\omega)t} dt \end{aligned}

  • 相应的傅里叶逆变换为:
    f ( t ) e σ t = 1 2 π F b ( σ + j ω ) e j ω t d ω f(t){\color{red}e^{-\sigma t}} = \frac{1}{2\pi} \int^{\infty}_{-\infty} F_b ({\color{red}\sigma} + j\omega) e^{j\omega t} d \omega
    f ( t ) = 1 2 π F b ( σ + j ω ) e ( σ + j ω ) t d ω f(t) = \frac{1}{2\pi} \int^{\infty}_{-\infty} F_b ({\color{red}\sigma} + j\omega) e^{({\color{red}\sigma} +j\omega) t} d \omega

  • s = σ + j ω ,    d ω = d s / j {\color{red}s = \sigma + j\omega}, \; d \omega = ds/j 有:
    F b ( s ) = f ( t ) e s t d t F_b ({\color{red}s}) = \int^{\infty}_{-\infty}f(t) e^{-{\color{red}s}t} dt
    f ( t ) = 1 2 π j σ j σ + j F b ( s ) e s t d s f({\color{red}t}) = \frac{1}{2\pi {\color{blue}j}} \int^{{\color{blue}\sigma+ j}\infty}_{{\color{blue}\sigma -j}\infty} F_b ({\color{blue}s}) e^{{\color{blue}s}{\color{red} t}} d {\color{blue}s}

  • F b ( s ) F_b(s) 称为 f ( t ) f(t) 双边拉氏变换(或象函数),

  • f ( t ) f(t) 称为 F b ( s ) F_b(s) 双边拉氏逆变换(或原函数

6.1.2 收敛域

只有选择适当的 σ \sigma 值才能使积分收敛,信号 f ( t ) f(t) 的双边拉普拉斯变换存在

  • 收敛域:使 f ( t ) f(t) 拉氏变换存在的 σ \sigma 取值范围。

  • 例1: 因果信号 f 1 ( t ) = e α t ε ( t ) f_1(t) = e^{\alpha t} \varepsilon (t) , 求其拉普拉斯变换:
    F 1 b ( s ) = 0 e α t e s t d t = 1 s α [ 1 lim t e ( σ α ) t e j ω t ] = { 1 s α ,    R e [ s ] = σ > α ,    R e [ s ] = σ = α ,    R e [ s ] = σ < α \begin{aligned}F_{1b}(s) & = \int^{\infty}_0 e^{\alpha t} e^{-st}dt\\& = \frac{1}{s-\alpha} \big[ 1-\lim_{t\to\infty} e^{-(\sigma-\alpha)t} e^{-j\omega t}\big] \\ & = \begin{cases}\frac{1}{s-\alpha} ,\; &\mathcal{Re}[s] = \sigma > \alpha \\ 不定, \; &\mathcal{Re}[s] = \sigma = \alpha \\ 无界 ,\; &\mathcal{Re}[s] = \sigma < \alpha \end{cases}\end{aligned}

    • 可见,对于因果信号,仅当 R e [ s ] = σ > α \mathcal{Re}[s]=\sigma>\alpha 时,其拉氏变换存在。收敛域如图所示。

    pic0001

  • 例2: 反因果信号 f 2 ( t ) = e β t ε ( t ) f_2(t) = e^{\beta t} \varepsilon (-t) , 求其拉普拉斯变换:
    F 2 b ( s ) = 0 e β t e s t d t = 1 s β [ 1 lim t e ( σ β ) t e j ω t ] = { 1 s β ,    R e [ s ] = σ < β ,    R e [ s ] = σ = β ,    R e [ s ] = σ > β \begin{aligned}F_{2b}(s) & = \int^0_{-\infty} e^{\beta t} e^{-st}dt\\& = \frac{-1}{s-\beta} \big[ 1-\lim_{t\to-\infty} e^{-(\sigma-\beta)t} e^{-j\omega t}\big] \\ & = \begin{cases}\frac{-1}{s-\beta} ,\; &\mathcal{Re}[s] = \sigma < \beta \\ 不定, \; &\mathcal{Re}[s] = \sigma = \beta \\ 无界 ,\; &\mathcal{Re}[s] = \sigma > \beta \end{cases}\end{aligned}

    • 可见,对于反因果信号,仅当 R e [ s ] = σ < β \mathcal{Re}[s]=\sigma<\beta 时,其拉氏变换存在。收敛域如图所示。
      pic0002
  • 例3: 双边信号
    f 3 ( t ) = f 1 ( t ) + f 2 ( t ) = { e β t , t < 0 e α t t > 0 \begin{aligned}f_3(t) = f_1(t) + f_2(t) = \begin{cases}e^{\beta t}, & t<0 \\ e^{\alpha t} &t>0 \end{cases}\end{aligned}

    • 仅当 β > α \beta > \alpha 其收敛域为 α < R e [ s ] < β \alpha< \mathcal{Re} [s] <\beta 的一个带状区域,如图所示。
      pic0003
  • 双边拉氏变换必须标出收敛域

  • 对于双边拉普拉斯变换而言, F b ( s ) F_b(s) 和收敛域一起,可以唯一地确定 f ( t ) f(t) 。即
    f ( t ) 一一对应 F b ( S ) + 收敛域 f(t) \overset{\text{一一对应}}{\longleftrightarrow} F_b(S) + {\color{blue} \text{收敛域}}

  • 不同的信号可以有相同的 F b ( s ) F_b(s) ,但收敛域不同。

6.1.3 单边拉氏变换的定义

  • 通常遇到的信号都有初始时刻,不妨设其初始时刻为坐标原点。
  • 这样, t < 0 t<0 时, f ( t ) = 0 f(t) = 0 。 从而拉氏变换式写为:
    F ( s ) = 0 f ( t ) e s t d t F(s) = \int^{\infty}_{0_-} f(t) e^{-st} dt
    • 称为单边拉氏变换。 简称拉氏变换
    • 其收敛域一定是 R e [ s ] > α Re[s]>\alpha ,可以省略。
  • F ( s ) = L [ f ( t ) ] F(s) = \mathfrak{L}[f(t)]
    L [ f ( t ) ] = F ( s ) = def 0 f ( t ) e s t d t \mathfrak{L}[f(t)] = F(s) \overset{\text{def}}{=} \int^{\infty}_{0} f(t) e^{-st} dt
  • f ( t ) = L 1 [ F ( s ) ] f(t) = \mathfrak{L}^{-1}[F(s)]
    L 1 [ F ( s ) ] = f ( t ) = def [ 1 2 π j σ j σ + j F b ( s ) e s t d s ] ε ( t ) \mathfrak{L}^{-1}[F(s)] =f(t) \overset{\text{def}}{=} \Big[\frac{1}{2\pi j} \int^{\sigma+ j\infty}_{\sigma -j\infty} F_b (s) e^{s t} d s\Big]\varepsilon(t)
    f ( t ) 1-to-1 F ( s ) {\color{red}f(t)\overset{\text{1-to-1}}{\longleftrightarrow} F(s)}

6.1.4 单边拉氏变换与傅里叶变换的关系

F ( s ) = 0 f ( t ) e s t d t ,    R e [ s ] > σ 0 F(s) = \int^{\infty}_{0} f(t) e^{-st} dt, \; \mathcal{Re}[s] >\sigma_0
F ( j ω ) = 0 f ( t ) e j ω t d t F(j\omega) = \int^{\infty}_{0} f(t) e^{-j\omega t} dt

  • 要讨论其关系, f ( t ) f(t) 必须为因果信号:

  • 根据收敛坐标 σ 0 < 0 \sigma_0<0 的值可分为以下三种情况:

    1. σ 0 < 0 \sigma_0<0 ,即 F ( s ) F(s) 的收敛域包含 j ω j\omega 轴,则 f ( t ) f(t) 的傅里叶变换存在,并且
      F ( j ω ) = F ( s ) s = j ω F(j\omega)=F(s)\big\vert_{s=j\omega}

      • f ( t ) = e 2 t ε ( t ) F ( s ) = 1 / ( s + 2 ) ,    σ > 2 f(t) = e^{-2t} \varepsilon(t) \longleftrightarrow F(s) = 1/(s+2), \; \sigma >-2
      • F ( j ω ) = 1 / ( j ω + 2 ) F(j\omega) = 1/(j\omega+2)
        pic0004
    2. σ 0 = 0 \sigma_0=0 ,即 F ( s ) F(s) 的收敛边界为 j ω j\omega 轴,则
      F ( j ω ) = lim σ 0 F ( s ) F(j\omega)=\lim_{\sigma\to0}F(s)

      • f ( t ) = ε ( t ) F ( s ) = 1 / s f(t) = \varepsilon(t) \longleftrightarrow F(s) = 1/s

      • F ( j ω ) = lim σ 0 1 σ + j ω = lim σ 0 σ σ 2 + ω 2 + lim σ 0 j ω σ 2 + ω 2 = π δ ( ω ) + 1 j ω \begin{aligned} F(j\omega) &=\lim_{\sigma\to0}\frac{1}{\sigma+j\omega}\\ & = \lim_{\sigma\to0} \frac{\sigma}{\sigma^2 + \omega^2} + \lim_{\sigma\to0}\frac{-j\omega}{\sigma^2+\omega^2} \\&= \pi \delta(\omega) +\frac{1}{j\omega}\end{aligned}
        pic0005
    3. σ 0 > 0 \sigma_0>0 ,即 F ( j ω ) F(j\omega) 不存在。

      • f ( t ) = e 2 t ε ( t ) F ( s ) = 1 / ( s 2 ) ,    σ > 2 f(t) = e^{2t} \varepsilon(t) \longleftrightarrow F(s) = 1/(s-2), \; \sigma >2
      • 则其傅里叶变换 F ( j ω ) F(j\omega) 不存在

      pic0006

6.1.5 常见信号的拉普拉斯变换

δ ( t ) 1 ,    σ > ε ( t ) 1 s ,    σ > 0 1 1 s ,    σ > 0 e s 0 t 1 s s 0 ,    σ > R e [ s 0 ] cos ( ω 0 t ) = e j ω 0 t + e j ω 0 t 2 s s 2 + ω 0 2 sin ( ω 0 t ) = e j ω 0 t e j ω 0 t 2 j ω 0 s 2 + ω 0 2 f T ( t ) 1 1 e s T 0 T f T ( t ) e s t d t δ T ( t ) 1 1 e s T \begin{aligned} \displaystyle \delta(t) \longleftarrow & \longrightarrow 1,\; \sigma > -\infty \\ \varepsilon(t)\longleftarrow & \longrightarrow \frac{1}{s},\; \sigma > 0 \\ 1 \longleftarrow & \longrightarrow \frac{1}{s},\; \sigma >0 \\ e^{s_0 t} \longleftarrow & \longrightarrow \frac{1}{s-s_0}, \; \sigma > \mathcal{Re}[s_0] \\ \cos(\omega_0 t) = \frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} \longleftarrow & \longrightarrow \frac{s}{s^2 +\omega_0^2} \\ \sin(\omega_0 t) = \frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} \longleftarrow & \longrightarrow \frac{\omega_0}{s^2 +\omega_0^2} \\ f_T(t) \longleftarrow & \longrightarrow \frac{1}{1-e^{-sT}} \int^{T}_{0} f_T(t) e^{-st} dt \\ \delta_T(t) \longleftarrow & \longrightarrow \frac{1}{1-e^{-sT}} \end{aligned}

  • 周期信号 f T ( t ) f_T(t) 解释:
    F T ( s ) = 0 f T ( t ) e s t d t = 0 T f T ( t ) e s t d t + T 2 T f T ( t ) e s t d t + = n = 0 n T ( n + 1 ) T f T ( t ) e s t d t \begin{aligned}F_T(s) & = \int^{\infty}_0 f_T(t) e^{-st} dt \\ &= \int^{T}_0 f_T(t) e^{-st} dt + \int^{2T}_T f_T(t) e^{-st} dt + \cdots \\ & = \sum^{\infty}_{n=0} \int^{(n+1)T}_{nT} f_T(t) e^{-st} dt\end{aligned}
    t = t + n T t = t+nT :
    n = 0 e n s T 0 T f T ( t ) e s t d t = 1 1 e s T 0 T f T ( t ) e s t d t \sum^{\infty}_{n=0} e^{-nsT} \int^{T}_{0} f_T(t) e^{-st} dt = \frac{1}{1-e^{-sT}} \int^{T}_{0} f_T(t) e^{-st} dt

6.2. 拉普拉斯变换的性质

6.2.1 线性性质


  • f 1 ( t ) F 1 ( s ) ,    R e [ s ] > σ 1 f 2 ( t ) F 2 ( s ) ,    R e [ s ] > σ 2 a 1 f 1 ( t ) + a 2 f 2 ( t ) a 1 F 1 ( s ) + a 2 F 2 ( s ) ,    R e [ s ] > max ( σ 1 , σ 2 ) \begin{aligned} \displaystyle f_1(t) \longleftarrow & \longrightarrow F_1(s),\; & \mathcal{Re}[s]>\sigma_1 \\ f_2(t) \longleftarrow & \longrightarrow F_2(s),\; & \mathcal{Re}[s]>\sigma_2 \\ a_1f_1(t) + a_2f_2(t) \longleftarrow & \longrightarrow a_1F_1(s) + a_2F_2(s) ,\;& \mathcal{Re}[s]>\max(\sigma_1,\sigma_2)\\ \end{aligned}

6.2.2 尺度变换


  • f ( t ) F ( s ) ,    α > 0 ,    R e [ s ] > σ 0 f ( α t ) 1 α F ( s α ) ,    R e [ s ] > α σ 0 \begin{aligned} \displaystyle f(t) \longleftarrow & \longrightarrow F(s), \; &{\color{red} 实数 \alpha >0} ,\; \mathcal{Re}[s]>\sigma_0\\ f(\alpha t) \longleftarrow & \longrightarrow \frac{1}{\alpha}F(\frac{s}{\alpha}) ,\; &\mathcal{Re}[s]>\alpha\sigma_0\\ \end{aligned}

6.2.3 时移性质


  • f ( t ) F ( s ) ,    R e [ s ] > σ 0 ,    t 0 > 0 ,    R e [ s ] > σ 0 f ( t t 0 ) ε ( t t 0 ) e s t 0 F ( s ) ,    R e [ s ] > σ 0 f ( α t t 0 ) ε ( α t t 0 ) 1 α e t 0 α s F ( s α ) ,    α > 0 ,    R e [ s ] > σ 0 \begin{aligned} \displaystyle f(t) \longleftarrow & \longrightarrow F(s),\; \mathcal{Re}[s]>\sigma_0,\; &{\color{red} 实常数 t_0 >0} ,\; \mathcal{Re}[s]>\sigma_0\\ f(t-t_0){\color{red}\varepsilon(t-t_0)} \longleftarrow & \longrightarrow e^{-st_0} F(s) ,\; & \mathcal{Re}[s]>\sigma_0\\ f(\alpha t-t_0){\color{red}\varepsilon(\alpha t-t_0)} \longleftarrow & \longrightarrow \frac{1}{\alpha} e^{-\frac{t_0}{\alpha} s} F(\frac{s}{\alpha}) ,\; &{\color{red} 实数 \alpha >0} ,\; \mathcal{Re}[s]>\sigma_0\\ \end{aligned}

  • f ( t ) f(t) 因果信号,
    f ( t t 0 ) e s t 0 F ( s ) f(t-t_0)\longleftarrow \longrightarrow e^{-st_0} F(s)

6.2.4. 复频移特性


  • f ( t ) F ( s ) ,    s α = σ α + j ω α ,    R e [ s ] > σ 0 f ( t ) e s α t F ( s s α ) ,    R e [ s ] > σ 0 + σ α \begin{aligned} \displaystyle f(t) \longleftarrow & \longrightarrow F(s), \; &{\color{red} 复常数 s_\alpha = \sigma_\alpha+ j\omega_\alpha} ,\; \mathcal{Re}[s]>\sigma_0\\ f(t)e^{s_\alpha t} \longleftarrow & \longrightarrow F(s-s_\alpha),\; &\mathcal{Re}[s]>\sigma_0+\sigma_\alpha\\ \end{aligned}

6.2.5. 时域微分特性


  • f ( t ) F ( s ) ,    R e [ s ] > σ 0 f ( t ) s F ( s ) f ( 0 ) f ( t ) s 2 F ( s ) s f ( 0 ) f ( 0 ) \begin{aligned} \displaystyle f(t) \longleftarrow & \longrightarrow F(s), \; &\mathcal{Re}[s]>\sigma_0\\ f^{\prime}(t) \longleftarrow & \longrightarrow sF(s)-f(0_-)\\ f^{\prime\prime}(t) \longleftarrow & \longrightarrow s^2 F(s)-sf(0_-)-f^{\prime}(0_-)\\\end{aligned}

  • f ( t ) f(t) 因果信号,则
    f ( n ) ( t ) s n F ( s ) f^{(n)} (t) \longleftarrow \longrightarrow s^n F(s)

6.2.6. 时域积分特性


  • f ( t ) F ( s ) ,    R e [ s ] > σ 0 0 t f ( x ) d x 1 s F ( s ) ( 0 t ) n f ( x ) d x 1 s n F ( s ) f ( 1 ) ( t ) = t f ( x ) d x s 1 F ( s ) + s 1 f ( 1 ) ( 0 ) \begin{aligned} \displaystyle f(t) \longleftarrow & \longrightarrow F(s), \; &\mathcal{Re}[s]>\sigma_0\\ \int^{t}_{0_-} f(x)dx \longleftarrow & \longrightarrow \frac{1}{s}F(s)\\ \Big(\int^{t}_{0_-}\Big)^n f(x)dx \longleftarrow & \longrightarrow \frac{1}{s^n}F(s)\\ f^{(-1)}(t) = \int^{t}_{-\infty} f(x)dx \longleftarrow & \longrightarrow s^{-1}F(s)+s^{-1}f^{(-1)}(0_-)\\\end{aligned}

  • f ( t ) f(t) 因果信号,则
    f ( t ) F n ( s ) s n f (t) \longleftarrow \longrightarrow \frac{F_n(s)}{s^n}

6.2.7. 复频域微分和积分


  • f ( t ) F ( s ) ,    R e [ s ] > σ 0 ( t ) f ( t ) d F ( s ) d s ( t ) n f ( t ) d n F ( s ) d s n f ( t ) t s F ( η ) d η \begin{aligned} \displaystyle f(t) \longleftarrow & \longrightarrow F(s), \; &\mathcal{Re}[s]>\sigma_0\\ (-t) f(t) \longleftarrow & \longrightarrow \frac{d F(s)}{ds}\\ (-t)^n f(t) \longleftarrow & \longrightarrow \frac{d^n F(s)}{d s^n}\\ \frac{f(t)}{t} \longleftarrow & \longrightarrow \int^{\infty}_{s} F(\eta)d\eta\\ \end{aligned}

6.2.8. 时域卷积定理

  • 若 因果函数:
    f 1 ( t ) F 1 ( s ) ,    R e [ s ] > σ 1 f 2 ( t ) F 2 ( s ) ,    R e [ s ] > σ 2 f 1 ( t ) f 2 ( t ) F 1 ( s ) F 2 ( s ) ,    R e [ s ] > max ( σ 1 , σ 2 ) \begin{aligned} \displaystyle f_1(t) \longleftarrow & \longrightarrow F_1(s),\; & \mathcal{Re}[s]>\sigma_1 \\ f_2(t) \longleftarrow & \longrightarrow F_2(s),\; & \mathcal{Re}[s]>\sigma_2 \\ f_1(t) \star f_2(t) \longleftarrow & \longrightarrow F_1(s) \cdot F_2(s) ,\;& \mathcal{Re}[s]>\max(\sigma_1,\sigma_2)\\ \end{aligned}

6.2.9. 复频域卷积定理

  • 若 因果函数:
    f 1 ( t ) F 1 ( s ) ,    R e [ s ] > σ 1 f 2 ( t ) F 2 ( s ) ,    R e [ s ] > σ 2 f 1 ( t ) f 2 ( t ) 1 2 π j c j c + j F 1 ( η ) F 2 ( s η ) d η ,    R e [ s ] > max ( σ 1 , σ 2 ) \begin{aligned} \displaystyle f_1(t) \longleftarrow & \longrightarrow F_1(s),\; & \mathcal{Re}[s]>\sigma_1 \\ f_2(t) \longleftarrow & \longrightarrow F_2(s),\; & \mathcal{Re}[s]>\sigma_2 \\ f_1(t) \cdot f_2(t) \longleftarrow & \longrightarrow \frac{1}{2\pi j} \int^{c+j\infty}_{c-j\infty} F_1(\eta) \cdot F_2(s-\eta)d\eta ,\;& \mathcal{Re}[s]>\max(\sigma_1,\sigma_2)\\ \end{aligned}

6.2.10. 初值 终值 定理

初值定理和终值定理常用于由 F ( s ) F(s) 直接求 f ( 0 + ) f(0+) f ( ) f(\infty) ,而不必求出原函数 f ( t ) f(t)

  • 初值定理:

    • 设函数 f ( t ) f(t) 不含 δ ( t ) \delta(t) 及其各阶导数(即 F ( s ) F(s) 为真分式,若 F ( s ) F(s) 为假分式化为真分式),则:
      f ( 0 + ) = lim t 0 + f ( t ) = lim s s F ( s ) f(0_+) = \lim_{t\to0_+} f(t) = \lim_{s\to\infty} s F(s)
  • 终值定理:

    • f ( t ) f(t) ,当 t t\to \infty 时存在, 并且 f ( t ) F ( s ) f(t) \leftrightarrow F(s) , R e [ s ] > σ 0 \mathcal{Re}[s]>\sigma_0 , σ 0 < 0 \sigma_0<0 , 则:
      f ( ) = lim s 0 s F ( s ) f(\infty) =\lim_{s\to 0} sF(s)

6.3. 拉普拉斯反变换

正变换
反(逆)变换
f(t) 时间空间
F(s) 复频空间

f ( t ) = L 1 [ F ( s ) ] L [ f ( t ) ] = F ( s ) f(t) = \mathfrak{L}^{-1}[F(s)] \longleftrightarrow \mathfrak{L} [f(t)] = F(s)

6.3.1. 拉普拉斯反变换

  • 直接利用定义式求反变换—复变函数积分,比较困难。

  • 通常的方法:

    1. 查表;
    2. 利用性质;
    3. 部分分式展开 --结合。
  • 若象函数 F ( s ) F(s) s s 的有理分式, 可写为:
    F ( s ) = b m s m + b m 1 s m 1 + + b 1 s + b 0 s n + a n 1 s n 1 + + a 1 s + a 0 {\color{blue}F(s) = \displaystyle \frac{b_m s^m + b_{m-1}s^{m-1} + \cdots + b_1 s + b_0}{s^n + a_{n-1}s^{n-1} + \cdots +a_1s+a_0}}

  • m n m\geq n (假分式),可用多项式除法将象函数 F ( s ) F(s) 分解为
    P ( s ) + {\color{blue}有理多项式 P(s)+ 有理真分式}
    F ( s ) = P ( s ) + B 0 ( s ) A ( s ) {\color{blue}F(s) = P(s) + \frac{B_0(s)}{A(s)}}

  • P ( s ) P(s) 的拉普拉斯逆变换由冲激函数及其各阶导数构成。

    • 例: P ( s ) a 1 s 2 + a 2 s + a 3 a 1 δ ( t ) + a 2 δ ( t ) + a 3 δ ( t ) P(s)\to a_1 s^2 + a_2 s + a_3 \to a_1\delta^{\prime\prime}(t) + a_2 \delta^{\prime}(t) +a_3\delta(t)
  • 下面主要讨论有理真分式

6.3.2. 部分分式展开法

  • F ( s ) F(s) s s 实系数有理真分式 ( m < n ) (m<n) ,则
    F ( s ) = B ( s ) A ( s ) = b m s m + b m 1 s m 1 + + b 1 s + b 0 s n + a n 1 s n 1 + + a 1 s + a 0 {\color{blue}F(s) = \displaystyle \frac{B(s)}{A(s)} = \displaystyle \frac{b_m s^m + b_{m-1}s^{m-1} + \cdots + b_1 s + b_0}{s^n + a_{n-1}s^{n-1} + \cdots +a_1s+a_0}}
    • 式中 A ( s ) A(s) 称为 F ( s ) F(s) 特征多项式 (characteristic polynomial),方程 A ( s ) = 0 A(s)=0 称为 特征方程,它的根称为 特征根,也称为 F ( s ) F(s) 固有频率(或自然频率)。 n n 个特征根 p i p_i 称为 F ( s ) F(s) 极点
  1. F ( s ) F(s) 为单极点(单根)
    F ( s ) = B ( s ) A ( s ) = K 1 s p 1 + K 2 s p 2 + + K i s p i + + K n s p n F(s) = \displaystyle \frac{B(s)}{A(s)} = \frac{K_1}{s-p_1}+\frac{K_2}{s-p_2}+ \cdots + \frac{K_i}{s-p_i}+ \cdots + \frac{K_n}{s-p_n}
    K i = ( s p i ) F ( s ) s = p i K_i = (s - p_i) F(s) \big\vert _{s=pi}
    L 1 [ 1 s p i ] = e p i t ε ( t ) \mathfrak{L}^{-1} \big[ \frac{1}{s-p_i} \big] = e^{p_i t} \varepsilon(t)

    • 特例 F ( s ) F(s) 包含共轭复根时 ( p 1 , 2 = α ± j β p_{1,2} = -\alpha\pm j\beta ):
      F ( s ) = B ( s ) D ( s ) [ ( s + α ) 2 + β 2 ] = B ( s ) D ( s ) ( s + α j β ) ( s + α + j β ) = K 1 s + α j β + K 2 s + α + j β + F 2 ( s ) K 1 = [ ( s + α j β ) F ( s ) ] s = α + j β = K 1 e j θ = A + j B K 2 = K 1 = K 1 e j θ = A j B F 1 ( s ) = K 1 s + α j β + K 2 s + α + j β = K 1 e j θ s + α j β + K 1 e j θ s + α + j β f 1 ( t ) = 2 K 1 e α t cos ( β t + θ ) ε ( t ) \begin{aligned} F(s) &= \displaystyle \frac{B(s)}{D(s)[(s+\alpha)^2 + \beta^2]}\\ &= \displaystyle \frac{B(s)}{D(s)(s+\alpha-j\beta)(s+\alpha+j\beta)}\\ &= \displaystyle \frac{K_1}{s+\alpha-j\beta}+\frac{K_2}{s+\alpha+j\beta}+F_2(s)\\ K_1 &= [(s+\alpha - j\beta)F(s)]\big\vert_{s=-\alpha +j\beta} \\ &= \lvert K_1\rvert e^{j\theta} \\ &=A+jB \\ K_2 &= K_1^* = \lvert K_1 \rvert e^{-j\theta} = A -jB\\ F_1(s) &= \displaystyle \frac{K_1}{s+\alpha-j\beta}+\frac{K_2}{s+\alpha+j\beta}\\ & = \displaystyle \frac{\lvert K_1\rvert e^{j\theta}}{s+\alpha-j\beta}+\frac{\lvert K_1 \rvert e^{-j\theta}}{s+\alpha+j\beta}\\ f_1(t) &= 2 \lvert K_1\rvert e^{-\alpha t} \cos(\beta t + \theta) \varepsilon(t)\end{aligned}
      K 1 , 2 = A ± j B ,    f 1 ( t ) = 2 e α t [ A cos ( β t ) B sin ( β t ) ] ε ( t ) 若 K_{1,2} = A \pm jB, \; f_1(t) = 2 e^{-\alpha t} [A \cos(\beta t) - B \sin(\beta t) ] \varepsilon(t)
  2. F ( s ) F(s) 有重极点(重根)

    • A ( s ) = 0 A(s) = 0 s = p 1 s=p_1 处有 r r 重根,
      F ( s ) = B ( s ) A ( s ) = K 11 ( s p 1 ) r + K 12 ( s p 1 ) r + + K 1 r ( s p 1 ) r F(s) = \displaystyle \frac{B(s)}{A(s)} = \frac{K_{11}}{(s-p_1)^r}+ \frac{K_{12}}{(s-p_1)^r}+ \cdots + \frac{K_{1r}}{(s-p_1)^r}
      K 11 = [ ( s p 1 ) r F ( s ) ] s = p 1 K_{11} = \displaystyle [(s - p_1)^r F(s)] \big\vert _{s=p1}
      K 12 = d [ ( s p 1 ) r F ( s ) ] d s s = p 1 K_{12} = \displaystyle \frac{d[(s - p_1)^r F(s)]}{ds} \big\vert _{s=p1}
      K 1 i = 1 ( i 1 ) ! d i 1 d s i 1 [ ( s p 1 ) r F ( s ) ] s = p 1 K_{1i} = \displaystyle \frac{1}{(i-1)!} \frac{d^{i-1}}{ds^{i-1}}[(s - p_1)^r F(s)] \Big\vert _{s=p_1}
      L [ t n ε ( t ) ] = n ! s n + 1 \mathfrak{L}[t^n \varepsilon(t)] = \frac{n!}{s^{n+1}}
      L 1 [ 1 ( s p 1 ) n + 1 ] = 1 n ! t n e p 1 t ε ( t ) \mathfrak{L}^{-1}\big[\frac{1}{(s-p_1)^{n+1}}\big] = \frac{1}{n!} t^n e^{p_1 t} \varepsilon(t)

To TOP 至目录

发布了15 篇原创文章 · 获赞 6 · 访问量 1136

猜你喜欢

转载自blog.csdn.net/Varalpha/article/details/105096437