第一章 行列式 第一节 二阶与三阶行列式

§1.1 二阶与三阶行列式

1.1.1 二元线性方程组与二阶行列式

  用消元法求解二元方程组

(1) { a 11 x 1 + a 12 x 2 = b 1 , a 21 x 1 + a 22 x 2 = b 2 . \left\{\begin{aligned} a_{11}x_{1}+ a_{12}x_{2} = b_{1},\\ a_{21}x_{1}+ a_{22}x_{2} = b_{2}. \end{aligned}\right. \tag {1}

  当 a 11 a 22 a 12 a 21 0 a_{11}a_{22}-a_{12}a_{21} \neq 0 时,求得方程组(1)的解为:
(2) x 1 = b 1 a 22 a 12 b 2 a 11 a 22 a 12 a 21 ,          x 2 = a 11 b 2 b 1 a 21 a 11 a 22 a 12 a 21 . x_{1} = \frac{ b_{1}a_{22}-a_{12}b_{2}} {a_{11}a_{22}-a_{12}a_{21}},\ \ \ \ \ \ \ \ x_{2} = \frac{ a_{11}b_{2}-b_{1}a_{21}} {a_{11}a_{22}-a_{12}a_{21}}. \tag {2}

  其中(2)式中的分母是由(1)式中的四个系数确定的,排成数表的形式
(3) a 11 a 12 a 21 a 22 \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{matrix} \tag{3}
表达式 a 11 a 22 a 12 a 21 a_{11}a_{22}-a_{12}a_{21} 称为数表(3)所确定的二阶行列式并记作
(4) a 11 a 12 a 21 a 22 \left| \begin{array}{ccc} a_{11}&a_{12}\\ a_{21}&a_{22} \end{array} \right| \tag{4}
a i j    ( i = 1 , 2 ; j = 1 , 2 ) a_{ij}\:\:(i=1,2;j=1,2) 称为行列式(4)的元素或元。元素 a i j a_{ij} 的第一个下标 i i 称为行标,表明钙元素位于第 i i 行,第二个下标 j j 称为列标,表明该元素位于第 j j 列,位于第 i i 行第 j j 的元素称为行列式(4)的 ( i , j ) (i,j) 元。

二元线性方程组的求解

  将(2)式中的分子也写成二阶行列式的形式,即
b 1 a 22 a 12 b 2 = b 1 a 12 b 2 a 22 ,         a 11 b 2 b 1 a 21 = a 11 b 1 a 21 b 2 . b_{1}a_{22}-a_{12}b_{2} = \left| \begin{array}{ccc} b_{1}&a_{12}\\ b_{2}&a_{22} \end{array} \right|,\ \ \ \ \ \ \ a_{11}b_{2}-b_{1}a_{21} = \left| \begin{array}{ccc} a_{11}&b_{1}\\ a_{21}&b_{2} \end{array} \right|.
若记
D = a 11 a 12 a 12 a 22 ,       D 1 = b 1 a 12 b 2 a 22 ,       D 2 = a 11 b 1 a 21 b 2 , D= \left| \begin{array}{ccc} a_{11}&a_{12}\\ a_{12}&a_{22} \end{array} \right|,\ \ \ \ \ D_{1}= \left| \begin{array}{ccc} b_{1}&a_{12}\\ b_{2}&a_{22} \end{array} \right|,\ \ \ \ \ D_{2}= \left| \begin{array}{ccc} a_{11}&b_{1}\\ a_{21}&b_{2} \end{array} \right|,
那么(2)式就可以写成
x 1 = D 1 D ,        x 2 = D 2 D . x_{1} = \frac{D_{1}}{D},\ \ \ \ \ \ x_{2} = \frac{D_{2}}{D}.
二元一次方程组的解就由上式给出。

1.1.2 三阶行列式

  设有9个数排成3行3列的数表
(5) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 \begin{matrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33} \end{matrix} \tag{5}

(6) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 11 a 23 a 32 a 12 a 21 a 32 a 13 a 22 a 31 , \begin{aligned} \left| \begin{array}{ccc} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33} \end{array} \right| =a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}\\-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{32}-a_{13}a_{22}a_{31}, \end{aligned} \tag{6}

式(6)称为数表(5)所确定的三阶行列式

《线性代数》同济大学第五版笔记

猜你喜欢

转载自blog.csdn.net/sunny1235435/article/details/89458166
今日推荐