第一章 行列式(知识点部分)

1. n 1.n阶行列式

代数和 ( 1 ) t a 1 p 1 a 2 p 2 . . . a n p n \sum (-1)^ta_{1p_1}a_{2p_2}...a_{np_n} 称为 n n 阶行列式 ( t p 1 p 2 . . . p n ) (t为排列p_1p_2...p_n的逆序数) ,记作 a 11 a 12 a 1 n a 21 a 22 a 2 n a n 1 a 12 a n n \begin{vmatrix} a_{11}&a_{12}&\dots& a_{1n} \\ a_{21} &a_{22}& \dots&a_{2n} \\ \vdots& \vdots & &\vdots \\ a_{n1} &a_{12}&\dots&a_{nn} \end {vmatrix}
简记作 d e t ( a i j ) det(a_{ij}) ,其中 a i j a_{ij} 为行列式 D D ( i , j ) (i,j) 元.

2. ( ) 2.主上(下)三角行列式

D = a 11 a 21 a 22 0 a n 1 a n 2 a n n = a 11 a 22 a n n ; ( 线 ) D=\begin{vmatrix} a_{11} \\ a_{21}&a_{22}& &0\\ \vdots&\vdots&\ddots \\ a_{n1}&a_{n2}&\dots&a_{nn} \\ \end{vmatrix}=a_{11}a_{22}{\dots}a_{nn};(对角线元素乘积)

3. 3.主对角行列式

D = λ 1 λ 2 λ n = λ 1 λ 2 λ n . ( 线 ) D=\begin{vmatrix} \lambda_{1} \\ & &\lambda_{2} \\ & & &\ddots \\ & & & &\lambda_{n} \end{vmatrix}=\lambda_{1}\lambda_{2}{\dots}\lambda_{n}.(对角线元素乘积)

4. 4.行列式的性质

( 1 ) . (1)行列式与它的转置行列式相等.
D = a 11 a 12 a 1 n a 21 a 22 a 2 n a n 1 a n 2 a n n = D T = a 11 a 21 a n 1 a 12 a 22 a n 2 a 1 n a 2 n a n n D=\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right|=D^{T}=\left|\begin{array}{cccc} a_{11} & a_{21} & \cdots & a_{n 1} \\ a_{12} & a_{22} & \cdots & a_{n 2} \\ \vdots & \vdots & & \vdots \\ a_{1 n} & a_{2 n} & \cdots & a_{n n} \end{array}\right|

( 2 ) ( ) . (2)对换行列式的两行(列),行列式变号.

( 3 ) ( ) . (3)行列式中的某一行(列)的所有元素的公因子可以提到行列式记号的外面.
a 11 a 12 a 1 n k a i 1 k a i 2 k a i n a n 1 a n 2 a n n = r i ÷ k k a 11 a 12 a 1 n a i 1 a i 2 a i n a n 1 a n 2 a n n \begin{vmatrix} a_{11}&a_{12}&\dots&a_{1n}\\ \vdots&\vdots&&\vdots\\ ka_{i1}&ka_{i2}&\dots&ka_{in}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\dots&a_{nn}\\ \end{vmatrix}\xlongequal{r_{i}÷k}k\begin{vmatrix} a_{11}&a_{12}&\dots&a_{1n}\\ \vdots&\vdots&&\vdots\\ a_{i1}&a_{i2}&\dots&a_{in}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\dots&a_{nn}\\ \end{vmatrix}
( 4 ) ( ) , . (4)行列式中如果有两行(列)元素成比例,则此行列式等于零.

( 5 ) ( ) i : (5)若行列式的某一行(列)的元素都是两数之和,例如第i行的元素都是两数之和:
D = a 11 a 12 a 1 n a i 1 + a i 1 a i 2 + a i 2 a i n + a i n a n 1 a n 2 a n n D=\begin{vmatrix} a_{11}&a_{12}&\dots&a_{1n}\\ \vdots&\vdots&&\vdots\\ a_{i1}+a{\prime}_{i1}&a_{i2}+a{\prime}_{i2}&\dots&a_{in}+a{\prime}_{in}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\dots&a_{nn}\\ \end{vmatrix}
D : 则D等于下列两个行列式之和:
D = a 11 a 12 a 1 n a i 1 a i 2 a i n a n 1 a n 2 a n n + a 11 a 12 a 1 n a i 1 a i 2 a i n a n 1 a n 2 a n n D=\begin{vmatrix} a_{11}&a_{12}&\dots&a_{1n}\\ \vdots&\vdots&&\vdots\\ a_{i1}&a_{i2}&\dots&a_{in}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\dots&a_{nn}\\ \end{vmatrix}+\begin{vmatrix} a_{11}&a_{12}&\dots&a_{1n}\\ \vdots&\vdots&&\vdots\\ a{\prime}_{i1}&a{\prime}_{i2}&\dots&a{\prime}_{in}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\dots&a_{nn}\\ \end{vmatrix}
( 6 ) ( ) ( ) . (6)把行列式的某一行(列)的各元素乘同一数然后加到另一行(列)对应的元素上去,行列式不变.
a 11 a 12 a 1 n a i 1 a i 2 a i n a j 1 a j 2 a j n a n 1 a n 2 a n n = r j + k r i a 11 a 12 a 1 n a i 1 a i 2 a i n a j 1 + k a i 1 a j 2 + k a i 2 a j n + k a i n a n 1 a n 2 a n n ( i j ) \begin{vmatrix} a_{11}&a_{12}&\dots&a_{1n}\\ \vdots&\vdots&&\vdots\\ a_{i1}&a_{i2}&\dots&a_{in}\\ \vdots&\vdots&&\vdots\\ a_{j1}&a_{j2}&\dots&a_{jn}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\dots&a_{nn}\\ \end{vmatrix}\xlongequal{r_{j}+kr_i}\begin{vmatrix} a_{11}&a_{12}&\dots&a_{1n}\\ \vdots&\vdots&&\vdots\\ a_{i1}&a_{i2}&\dots&a_{in}\\ \vdots&\vdots&&\vdots\\ a_{j1}+ka_{i1}&a_{j2}+ka_{i2}&\dots&a_{jn}+ka_{in}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\dots&a_{nn}\\ \end{vmatrix} (i\not = j)

5. ( ) 5.副上(下)三角行列式

在这里插入图片描述

6. 6.副对角行列式

在这里插入图片描述

7. D = D 1 D 2 7.D=D_1D_2

D = a 11 a 1 k 0 a k 1 a k k c 11 c 1 k b 11 b 1 n c n 1 c n k b n 1 b n n D=\left|\begin{array}{ccccc} a_{11} & \cdots & a_{1 k} & & \\ \vdots & &\vdots & & 0 & \\ a_{k 1} & \cdots & a_{k k} & & & \\ c_{11} & \cdots & c_{1 k} & b_{11} & \cdots & b_{1 n} \\ \vdots & & \vdots & \vdots & & \vdots \\ c_{n 1} & \cdots & c_{n k} & b_{n 1} & \cdots & b_{n n} \end{array}\right|
D 1 = a 11 a 1 k a k 1 a k k , D 2 = b 11 b 1 n b n 1 b n n D_1=\begin{vmatrix} a_{11}&\dots&a_{1k}\\ \vdots&&\vdots\\ a_{k1}&\dots&a_{kk}\\ \end{vmatrix},D_2=\begin{vmatrix} b_{11}&\dots&b_{1n}\\ \vdots&&\vdots\\ b_{n1}&\dots&b_{nn}\\ \end{vmatrix}

8. X 8.X型行列式

在这里插入图片描述

9. 9.范德蒙德行列式

D n = 1 1 1 x 1 x 2 x n x 1 2 x 2 2 x n 2 x 1 n 1 x 2 n 1 x n n 1 = n 1 j 1 ( x i x j ) D_{n}=\left|\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \end{array}\right|=\prod_{n \geq 1 \geq j \geq 1}\left(x_{i-} x_{j}\right)

10. ( ) 10.行列式按行(列)展开法则及零值定理

k = 1 n a i k A j k = { D , i = j , 0 , i j , \sum_{k=1}^{n} a_{i k} A_{j k}=\left\{\begin{array}{c} D, 当i=j,\\ 0, 当i\not = j,\\ \end{array}\right.

发布了208 篇原创文章 · 获赞 182 · 访问量 8640

猜你喜欢

转载自blog.csdn.net/qq_45645641/article/details/105353001