线性代数笔记——向量组的线性相关及线性表示

一、向量组的线性相关与线性无关

1、定义:设\alpha _{1},\alpha _{2},\cdots,\alpha _{t} 是F^{n}中的向量组,如果存在不全为零的常数k_{1},k_{2},\cdots,k_{t}\in F,使得k_{1}\alpha _{1}+k_{2}\alpha _{2}+\cdots+k_{t}\alpha _{t}=0则称向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{t}是线性相关的,否则,称向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{t}是线性无关的.

2、说明

(1)如果向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{t}线性无关,那么k_{1}\alpha _{1}+k_{2}\alpha _{2}+\cdots+k_{t}\alpha _{t}=0\Rightarrow k_{1}=k_{2}=\cdots=k_{t}=0

(2)一个向量组不是线性无关的就一定是线性相关的

(3)含有零向量的向量组一定是线性相关的

(4)向量组\alpha线性无关的充分必要条件是\alpha\neq 0

(5)向量组\alpha,\beta线性相关的充分必要条件是\alpha\beta的对应分量成比例.如果

          \alpha =\begin{pmatrix}a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix}, \beta =\begin{pmatrix}b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{pmatrix},那么a_{1}:b_{1}=a_{2}:b_{2}=\cdots=a_{n}:b_{n}

(6)设\alpha _{1},\alpha _{2},\cdots,\alpha _{t}F^{n}中的向量组,\alpha _{i_{1}},\alpha _{i_{2}},\cdots,\alpha _{i_{s}}\alpha _{1},\alpha _{2},\cdots,\alpha _{t}中的部分向量构成的向量组.

          ①如果\alpha _{i_{1}},\alpha _{i_{2}},\cdots,\alpha _{i_{s}}线性相关,则\alpha _{1},\alpha _{2},\cdots,\alpha _{t}线性相关;

          ②如果\alpha _{1},\alpha _{2},\cdots,\alpha _{t}线性无关,则\alpha _{i_{1}},\alpha _{i_{2}},\cdots,\alpha _{i_{s}}线性无关.

扫描二维码关注公众号,回复: 2831274 查看本文章

(7)向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{t}线性相关 \Leftrightarrow 存在不全为零的常数 k_{1},k_{2},\cdots,k_{t} ,使得

         k_{1}\alpha _{1}+k_{2}\alpha _{2}+\cdots+k_{t}\alpha _{t}=(\alpha _{1},\alpha _{2},\cdots,\alpha _{t})\begin{pmatrix}k_{1} \\ k_{2} \\ \vdots \\ k_{t} \end{pmatrix}=0

3、命题4  向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{t}线性相关的充分必要条件是齐次线性方程组有非零解.

         x_{1}\alpha _{1}+x_{2}\alpha _{2}+\cdots+x_{t}\alpha _{t}=(\alpha _{1},\alpha _{2},\cdots,\alpha _{t})\begin{pmatrix}x_{1} \\ x_{2} \\ \vdots \\ x_{t} \end{pmatrix}=AX=0

二、向量由向量组的线性表示

1、设\alpha _{1},\alpha _{2},\cdots,\alpha _{t}F^{n}中的向量组,如果 \beta \in F^{n} 能够表示为\alpha _{1},\alpha _{2},\cdots,\alpha _{t}的线性组合,即存在F中的常数k_{1},k_{2},\cdots,k_{t},使得 \beta =k_{1}\alpha _{1}+k_{2}\alpha _{2}+\cdots+k_{t}\alpha _{t} ,则称\beta可由向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{t}线性表示.

2、命题5  设向量\alpha _{1},\alpha _{2},\cdots,\alpha _{t},\beta \in F^{n} ,向量\beta可由向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{t}线性表示的充分必要条件是线性方程组(*)有解.

                 x_{1}\alpha _{1}+x_{2}\alpha _{2}+\cdots+x_{t}\alpha _{t}=(\alpha _{1},\alpha _{2},\cdots,\alpha _{t})\begin{pmatrix}x_{1} \\ x_{2} \\ \vdots \\ x_{t} \end{pmatrix}=\beta \: \: \: \: \: \: (*)

3、定理1  F^{n}中的向量组 \alpha _{1},\alpha _{2},\cdots,\alpha _{t}(t\geq 2) 线性相关的充分必要条件是向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{t} 中至少存在一个向量可由其余向量线性表示.

     证明:①必要性

                设向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{t} 线性相关.根据线性相关的定义得知,存在不全为零的常数 k_{1},k_{2},\cdots,k_{t} ,使得

                k_{1}\alpha _{1}+k_{2}\alpha _{2}+\cdots+k_{t}\alpha _{t}=0

               如假设 k_{i}\neq 0 ,则 a_{i}=(-\frac{k_{1}}{k_{i}})\alpha _{1}+\cdots+(-\frac{k_{i-1}}{k_{i}})\alpha _{i-1}+(-\frac{k_{i+1}}{k_{i}})\alpha _{i+1}+\cdots+(-\frac{k_{t}}{k_{i}})\alpha _{t}

               因此,\alpha _{i}可由\alpha _{1},\cdots,\alpha _{i-1},\alpha _{i+1},\cdots,\alpha _{t}线性表示.

               ②充分性

               设\alpha _{i}可由\alpha _{1},\cdots,\alpha _{i-1},\alpha _{i+1},\cdots,\alpha _{t}线性表示,那么存在常数 k _{1},\cdots,k _{i-1},k _{i+1},\cdots,k _{t} 使得

               \alpha _{i}=k_{1}\alpha _{1}+\cdots +k_{i-1}\alpha _{i-1}+k_{i+1}\alpha _{i+1}+\cdots+k_{t}\alpha _{t}

               即有 k_{1}\alpha _{1}+\cdots +k_{i-1}\alpha _{i-1}+(-\alpha _{i})+k_{i+1}\alpha _{i+1}+\cdots+k_{t}\alpha _{t}=0

               因为 k _{1},\cdots,k _{i-1},-1,k _{i+1},\cdots,k _{t} 不全为零,所以向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{t}线性相关。证毕

4、定理2  如果F^{n}中的向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{t}线性无关,向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{t},\beta 线性相关,那么向量\beta可以由\alpha _{1},\alpha _{2},\cdots,\alpha _{t}线性表示,并且表示方式唯一的.

三、向量组的线性表示

1、定义:设 \alpha _{1},\alpha _{2},\cdots,\alpha _{s} 与 \beta _{1},\beta _{2},\cdots,\beta _{t} 是F^{n}中的两个向量组.如果 \alpha _{1},\alpha _{2},\cdots,\alpha _{s} 中的每个向量都可由 \beta _{1},\beta _{2},\cdots,\beta _{t} 线性表示,则称 \alpha _{1},\alpha _{2},\cdots,\alpha _{s} 可由 \beta _{1},\beta _{2},\cdots,\beta _{t} 线性表示.

2、命题6  设 \alpha _{1},\alpha _{2},\cdots,\alpha _{t} 是F^{n}中的向量组,\alpha _{i_{1}},\alpha _{i_{2}},\cdots,\alpha _{i_{s}} 是 \alpha _{1},\alpha _{2},\cdots,\alpha _{t}中的部分向量构成的向量组,那么  \alpha _{i_{1}},\alpha _{i_{2}},\cdots,\alpha _{i_{s}} 可由 \alpha _{1},\alpha _{2},\cdots,\alpha _{t} 线性表示.

3、定理3  设 \alpha _{1},\alpha _{2},\cdots,\alpha _{s} 与 \beta _{1},\beta _{2},\cdots,\beta _{t} 是F^{n}中的两个向量组.那么下列结论成立:

   (1)\alpha _{1},\alpha _{2},\cdots,\alpha _{s} 可由 \beta _{1},\beta _{2},\cdots,\beta _{t} 线性表示的充分必要条件是存在t*s矩阵 C=(c_{ij}) ,使得

             (\alpha _{1},\alpha _{2},\cdots,\alpha _{s})=(\beta _{1},\beta _{2},\cdots,\beta _{t})C.

   (2)设  (\alpha _{1},\alpha _{2},\cdots,\alpha _{s})=(\beta _{1},\beta _{2},\cdots,\beta _{t})C

            ①如果\beta _{1},\beta _{2},\cdots,\beta _{t}是线性无关的,则C是唯一的;

            ②如果\alpha _{1},\alpha _{2},\cdots,\alpha _{s}是线性无关的,则r(C)=s

     证明如下:

   (1)充分性显然成立;

            必要性:因为\alpha _{1},\alpha _{2},\cdots,\alpha _{s} 可由 \beta _{1},\beta _{2},\cdots,\beta _{t} 线性表示,所以对所有的 i\in \begin{Bmatrix} 1,2,\cdots,s \end{Bmatrix} ,都有

                          \alpha _{i}=c_{1i}\beta {1}+c_{2i}\beta _{i+1}+\cdots+c_{ti}\beta _{t}

                           因此,(\alpha _{1},\alpha _{2},\cdots,\alpha _{s})=(\beta _{1},\beta _{2},\cdots,\beta _{t})C 其中 C=(c_{ij}) 是t*s矩阵.

   (2)设 (\alpha _{1},\alpha _{2},\cdots,\alpha _{s})=(\beta _{1},\beta _{2},\cdots,\beta _{t})C 如果\beta _{1},\beta _{2},\cdots,\beta _{t}是线性无关,则根据定理2,对所有的i\in \begin{Bmatrix} 1,2,\cdots,s \end{Bmatrix}

            \alpha _{i}可由\beta _{1},\beta _{2},\cdots,\beta _{t}唯一地表示为 \alpha _{i}=c_{1i}\beta {1}+c_{2i}\beta _{i+1}+\cdots+c_{ti}\beta _{t},因此,C的第i列是唯一的,从而C是唯一的.

           如果\alpha _{1},\alpha _{2},\cdots,\alpha _{s}是线性无关的,用反证法证明 r(C)=s 

           假设r(C)<s ,则根据定理1.6,齐次方程组CX=0有非零解 (k_{1},k_{2},\cdots,k_{s})^{T} ,于是

           k_{1}\alpha _{1}+k_{2}\alpha _{2}+\cdots+k_{s}\alpha _{s}= (\alpha _{1},\cdots,\alpha _{s})\begin{pmatrix}k_{1} \\ k_{2} \\ \vdots \\ k_{s} \end{pmatrix}=(\beta _{1},\cdots,\beta _{s})C\begin{pmatrix}k_{1} \\ k_{2} \\ \vdots \\ k_{s} \end{pmatrix}=0

          并且 k_{1},k_{2},\cdots,k_{s} 不全为零,这意味着\alpha _{1},\alpha _{2},\cdots,\alpha _{s}是线性相关的,与假设矛盾.

          因此,如果\alpha _{1},\alpha _{2},\cdots,\alpha _{s} 是线性无关的,则 r(C)=s

    推论1  设\alpha _{1},\alpha _{2},\cdots,\alpha _{s}\beta _{1},\beta _{2},\cdots,\beta _{t}F^{n}中的两个向量组,如果\alpha _{1},\alpha _{2},\cdots,\alpha _{s}可由\beta _{1},\beta _{2},\cdots,\beta _{t}线性表示,并且

                \alpha _{1},\alpha _{2},\cdots,\alpha _{s}线性无关,那么s\leq t.

    推论2  如果向量组\alpha _{1},\alpha _{2},\cdots,\alpha _{s}可由\beta _{1},\beta _{2},\cdots,\beta _{t}线性表示,\beta _{1},\beta _{2},\cdots,\beta _{t} 可由\gamma _{1},\gamma _{2},\cdots,\gamma _{u} 线性表示,那么

               \alpha _{1},\alpha _{2},\cdots,\alpha _{s} 可由\gamma _{1},\gamma _{2},\cdots,\gamma _{u}线性表示.

猜你喜欢

转载自blog.csdn.net/wys7541/article/details/81748449