导数、左右导数、高阶导数详解

定义

点可导

函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的邻域 U ( x 0 ) U(x_0) U(x0) 有定义,给定一个增量 Δ x \Delta x Δx x 0 + Δ x ∈ U ( x 0 ) x_0+\Delta x\in U(x_0) x0+ΔxU(x0) Δ x \Delta x Δx 可正可负),且极限 lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim\limits_{\Delta x\rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} Δx0limΔxf(x0+Δx)f(x0) 存在,则称此极限为 f ( x ) f(x) f(x) x 0 x_0 x0 处的导数,记作 f ′ ( x 0 ) f'(x_0) f(x0) y ′ ∣ x = x 0 y'|_{x=x_0} yx=x0 d y d x ∣ x = x 0 \frac{dy}{dx}|_{x=x_0} dxdyx=x0 d f ( x ) d x ∣ x = x 0 \frac{df(x)}{dx}|_{x=x_0} dxdf(x)x=x0

此极限还有另一种表示形式,令 x = x 0 + Δ x x=x_0+\Delta x x=x0+Δx,则 Δ x = x − x 0 \Delta x=x-x_0 Δx=xx0
f ′ ( x 0 ) = lim ⁡ Δ x → x 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \begin{aligned}f'(x_0)&=\lim\limits_{\Delta x\rightarrow x_0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}\\&=\lim\limits_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}\end{aligned} f(x0)=Δxx0limΔxf(x0+Δx)f(x0)=xx0limxx0f(x)f(x0)

由定义可知导数 f ′ ( x ) f'(x) f(x) 实质就是一个特殊的极限

区间可导

若函数 y = f ( x ) y=f(x) y=f(x) 在区间 I x I_x Ix 的每一点都可导,记作 f ′ ( x ) f'(x) f(x) y ′ y' y d y d x \frac{dy}{dx} dxdy d f ( x ) d x \frac{df(x)}{dx} dxdf(x),称 f ′ ( x ) f'(x) f(x) f ( x ) f(x) f(x)导函数

单侧导数

左导数

函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的左邻域 U ( x 0 − ) U(x_0^-) U(x0) 有定义,则左导数定义为
f ′ ( x 0 − ) = lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 f'(x_0^-)=\lim\limits_{x\rightarrow x_0^-}\frac{f(x)-f(x_0)}{x-x_0} f(x0)=xx0limxx0f(x)f(x0)

右导数

函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的右邻域 U ( x 0 + ) U(x_0^+) U(x0+) 有定义,则右导数定义为
f ′ ( x 0 + ) = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 f'(x_0^+)=\lim\limits_{x\rightarrow x_0^+}\frac{f(x)-f(x_0)}{x-x_0} f(x0+)=xx0+limxx0f(x)f(x0)

存在条件

函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0 处存在导数的充要条件

  • f ( x ) f(x) f(x) x 0 x_0 x0连续
    此条件保证了 f ( x 0 ) f(x_0) f(x0) 存在且导数定义式极限不为无穷大
  • f ( x ) f(x) f(x) x 0 x_0 x0左右导数相等
    此条件保证了 x x x 以任意方式趋近 x 0 x_0 x0 的结果都一样

这两个条件缺一不可,如下图
在这里插入图片描述

  • 左图 y = x ( x − 2 ) x − 2 y=\frac{x(x-2)}{x-2} y=x2x(x2) 在点 ( 2 , 2 ) (2,2) (2,2) 处不连续但是左右导数相等, f ( 2 ) f(2) f(2) 不存在,因此极限 lim ⁡ x → 2 f ( x ) − f ( 2 ) x − 2 \lim\limits_{x\rightarrow 2}\frac{f(x)-f(2)}{x-2} x2limx2f(x)f(2) 不存在, f ( x ) f(x) f(x) 2 2 2 处导数不存在
  • 右图 y = ∣ x ∣ y=|x| y=x 在点 ( 0 , 0 ) (0,0) (0,0) 处左右导数不相等但是连续,左导数 f ( 0 − ) = − 1 f(0^-)=-1 f(0)=1、右导数 f ( 0 + ) = 1 f(0^+)=1 f(0+)=1,因此导数不存在

意义

函数意义

函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0 处的导数 f ′ ( x 0 ) f'(x_0) f(x0) 即为 f ( x ) f(x) f(x) x 0 x_0 x0 处的变化率(变化快慢)

几何意义

函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0 处的导数 f ′ ( x 0 ) f'(x_0) f(x0) 即为 f ( x ) f(x) f(x) x 0 x_0 x0切线的斜率

求导法则

和差积商

u = u ( x ) ,   v = v ( x ) u=u(x),~v=v(x) u=u(x), v=v(x) 都可导,则

  • ( u ± v ) ′ = u ′ ± v ′ (u\pm v)'=u'\pm v' (u±v)=u±v
  • ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv
  • ( u v ) ′ = u ′ v − u v ′ v 2 ,   v ( x ) ≠ 0 (\frac{u}{v})'=\frac{u'v-uv'}{v^2},~v(x)\neq 0 (vu)=v2uvuv, v(x)=0
证明过程

( u ± v ) ′ = u ′ ± v ′ (u\pm v)'=u'\pm v' (u±v)=u±v极限运算法则的加减法则易知

( u v ) ′ = lim ⁡ Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x ) Δ x = lim ⁡ Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x + Δ x ) + u ( x ) v ( x + Δ x ) − u ( x ) v ( x ) Δ x = lim ⁡ Δ x → 0 [ u ( x + Δ x ) − u ( x ) ] v ( x + Δ x ) Δ x + lim ⁡ Δ x → 0 [ v ( x + Δ x ) − v ( x ) ] u ( x ) Δ x = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) \begin{aligned} (uv)'&=\lim\limits_{\Delta x\rightarrow 0}\frac{u(x+\Delta x)v(x+\Delta x)-u(x)v(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{u(x+\Delta x)v(x+\Delta x)-u(x)v(x+\Delta x)+u(x)v(x+\Delta x)-u(x)v(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{[u(x+\Delta x)-u(x)]v(x+\Delta x)}{\Delta x}+\lim\limits_{\Delta x\rightarrow 0}\frac{[v(x+\Delta x)-v(x)]u(x)}{\Delta x}\\ &=u'(x)v(x)+u(x)v'(x) \end{aligned} (uv)=Δx0limΔxu(x+Δx)v(x+Δx)u(x)v(x)=Δx0limΔxu(x+Δx)v(x+Δx)u(x)v(x+Δx)+u(x)v(x+Δx)u(x)v(x)=Δx0limΔx[u(x+Δx)u(x)]v(x+Δx)+Δx0limΔx[v(x+Δx)v(x)]u(x)=u(x)v(x)+u(x)v(x)

( u v ) ′ = lim ⁡ Δ x → 0 u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x ) Δ x = lim ⁡ Δ x → 0 u ( x + Δ x ) v ( x ) − u ( x ) v ( x + Δ x ) v ( x + Δ x ) v ( x ) Δ x = lim ⁡ Δ x → 0 u ( x + Δ x ) v ( x ) − u ( x ) v ( x ) + u ( x ) v ( x ) − u ( x ) v ( x + Δ x ) v ( x + Δ x ) v ( x ) Δ x = lim ⁡ Δ x → 0 [ u ( x + Δ x ) − u ( x ) ] v ( x ) − u ( x ) [ v ( x + Δ x ) − v ( x ) ] v ( x + Δ x ) v ( x ) Δ x = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v 2 ( x ) \begin{aligned} (\frac{u}{v})'&=\lim\limits_{\Delta x\rightarrow 0}\frac{\frac{u(x+\Delta x)}{v(x+\Delta x)}-\frac{u(x)}{v(x)}}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\frac{u(x+\Delta x)v(x)-u(x)v(x+\Delta x)}{v(x+\Delta x)v(x)}}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{u(x+\Delta x)v(x)-u(x)v(x)+u(x)v(x)-u(x)v(x+\Delta x)}{v(x+\Delta x)v(x)\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{[u(x+\Delta x)-u(x)]v(x)-u(x)[v(x+\Delta x)-v(x)]}{v(x+\Delta x)v(x)\Delta x}\\ &=\frac{u'(x)v(x)-u(x)v'(x)}{v^2(x)} \end{aligned} (vu)=Δx0limΔxv(x+Δx)u(x+Δx)v(x)u(x)=Δx0limΔxv(x+Δx)v(x)u(x+Δx)v(x)u(x)v(x+Δx)=Δx0limv(x+Δx)v(x)Δxu(x+Δx)v(x)u(x)v(x)+u(x)v(x)u(x)v(x+Δx)=Δx0limv(x+Δx)v(x)Δx[u(x+Δx)u(x)]v(x)u(x)[v(x+Δx)v(x)]=v2(x)u(x)v(x)u(x)v(x)

反函数

函数 y = f ( x ) y=f(x) y=f(x) x = f − 1 ( y ) x=f^{-1}(y) x=f1(y) 互为反函数,则
f ′ ( x ) = 1 [ f − 1 ( y ) ] ′ f'(x)=\frac{1}{[f^{-1}(y)]'} f(x)=[f1(y)]1
也可写成
d y d x = 1 d x d y \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} dxdy=dydx1

证明过程

给定 x x x 一个增量 Δ x \Delta x Δx,对应的 y y y 的增量为 Δ y \Delta y Δy
因为可导一定连续,即 lim ⁡ Δ x → 0 Δ y \lim\limits_{\Delta x\rightarrow 0}\Delta y Δx0limΔy,则 Δ x → 0 \Delta x\rightarrow 0 Δx0 Δ y → 0 \Delta y\rightarrow 0 Δy0
f ′ ( x ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 1 Δ x Δ y = lim ⁡ Δ y → 0 1 Δ x Δ y = 1 lim ⁡ Δ y → 0 Δ x Δ y = 1 [ f − 1 ( y ) ] ′ \begin{aligned} f'(x)&=\lim\limits_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{1}{\frac{\Delta x}{\Delta y}}\\ &=\lim\limits_{\Delta y\rightarrow 0}\frac{1}{\frac{\Delta x}{\Delta y}}\\ &=\frac{1}{\lim\limits_{\Delta y\rightarrow 0}\frac{\Delta x}{\Delta y}}\\ &=\frac{1}{[f^{-1}(y)]'} \end{aligned} f(x)=Δx0limΔxΔy=Δx0limΔyΔx1=Δy0limΔyΔx1=Δy0limΔyΔx1=[f1(y)]1

复合函数

复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 由函数 y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x) 复合而成,则
y ′ = f ′ ( u ) ⋅ g ′ ( x ) y'=f'(u)\cdot g'(x) y=f(u)g(x)
也可写成
d y d x = d y d u ⋅ d u d x \frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} dxdy=dudydxdu

证明过程

给定 x x x 一个增量 Δ x \Delta x Δx,对应的 u u u 的增量为 Δ u \Delta u Δu,对应的 y y y 的增量为 Δ y \Delta y Δy
∵ f ′ ( u ) = lim ⁡ Δ u → 0 Δ y Δ u \because f'(u)=\lim\limits_{\Delta u\rightarrow 0}\frac{\Delta y}{\Delta u} f(u)=Δu0limΔuΔy
∴ Δ y Δ u = f ′ ( u ) + α ( Δ u ) \therefore\frac{\Delta y}{\Delta u}=f'(u)+\alpha(\Delta u) ΔuΔy=f(u)+α(Δu)
∴ Δ y = f ′ ( u ) Δ u + α ( Δ u ) Δ u \therefore\Delta y=f'(u)\Delta u+\alpha(\Delta u)\Delta u Δy=f(u)Δu+α(Δu)Δu
∴ Δ y Δ x = f ′ ( u ) Δ u Δ x + α ( Δ u ) Δ u Δ x \therefore\frac{\Delta y}{\Delta x}=f'(u)\frac{\Delta u}{\Delta x}+\alpha(\Delta u)\frac{\Delta u}{\Delta x} ΔxΔy=f(u)ΔxΔu+α(Δu)ΔxΔu
可导一定连续,则 Δ x → 0 \Delta x\rightarrow 0 Δx0 Δ u → 0 \Delta u\rightarrow 0 Δu0 Δ u → 0 \Delta u\rightarrow 0 Δu0 Δ y → 0 \Delta y\rightarrow 0 Δy0
d y d x = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 [ f ′ ( u ) Δ u Δ x + α ( Δ u ) Δ u Δ x ] = f ′ ( u ) ⋅ g ′ ( x ) \begin{aligned} \frac{dy}{dx}&=\lim\limits_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}[f'(u)\frac{\Delta u}{\Delta x}+\alpha(\Delta u)\frac{\Delta u}{\Delta x}]\\ &=f'(u)\cdot g'(x) \end{aligned} dxdy=Δx0limΔxΔy=Δx0lim[f(u)ΔxΔu+α(Δu)ΔxΔu]=f(u)g(x)

作用

判断函数单调性

若函数 y = f ( x ) y=f(x) y=f(x) 在区间 ( a , b ) (a,b) (a,b) 内导函数 f ′ ( x ) ≥ 0 f'(x)\geq 0 f(x)0 且等号只在有限个点成立,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 内单调递增

若函数 y = f ( x ) y=f(x) y=f(x) 在区间 ( a , b ) (a,b) (a,b) 内导函数 f ′ ( x ) ≤ 0 f'(x)\leq 0 f(x)0 且等号只在有限个点成立,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 内单调递减

判断函数凹凸性

若函数 y = f ( x ) y=f(x) y=f(x) 在区间 ( a , b ) (a,b) (a,b) 内二阶导数 f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 内为凹函数

若函数 y = f ( x ) y=f(x) y=f(x) 在区间 ( a , b ) (a,b) (a,b) 内二阶导数 f ′ ′ ( x ) < 0 f''(x)<0 f′′(x)<0,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 内为凸函数

判断函数极值点

若函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0 处取得极值,则 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

常见函数的导数

原函数 导函数
f ( x ) = C f(x)=C f(x)=C f ′ ( x ) = 0 f'(x)=0 f(x)=0
f ( x ) = x μ f(x)=x^\mu f(x)=xμ f ′ ( x ) = μ x μ − 1 f'(x)=\mu x^{\mu-1} f(x)=μxμ1
f ( x ) = a x f(x)=a^x f(x)=ax f ′ ( x ) = a x ln ⁡ a f'(x)=a^x\ln a f(x)=axlna
f ( x ) = e x f(x)=e^x f(x)=ex f ′ ( x ) = e x f'(x)=e^x f(x)=ex
f ( x ) = log ⁡ a x f(x)=\log_ax f(x)=logax f ′ ( x ) = 1 x ln ⁡ a f'(x)=\frac{1}{x\ln a} f(x)=xlna1
f ( x ) = ln ⁡ x f(x)=\ln x f(x)=lnx f ′ ( x ) = 1 x f'(x)=\frac{1}{x} f(x)=x1
f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx f ′ ( x ) = cos ⁡ x f'(x)=\cos x f(x)=cosx
f ( x ) = cos ⁡ x f(x)=\cos x f(x)=cosx f ′ ( x ) = − sin ⁡ x f'(x)=-\sin x f(x)=sinx
f ( x ) = tan ⁡ x f(x)=\tan x f(x)=tanx f ′ ( x ) = sec ⁡ 2 x f'(x)=\sec^2x f(x)=sec2x
f ( x ) = cot ⁡ x f(x)=\cot x f(x)=cotx f ′ ( x ) = − csc ⁡ 2 x f'(x)=-\csc^2x f(x)=csc2x
f ( x ) = sec ⁡ x f(x)=\sec x f(x)=secx f ′ ( x ) = sec ⁡ x tan ⁡ x f'(x)=\sec x\tan x f(x)=secxtanx
f ( x ) = csc ⁡ x f(x)=\csc x f(x)=cscx f ′ ( x ) = − csc ⁡ x cot ⁡ x f'(x)=-\csc x\cot x f(x)=cscxcotx
f ( x ) = arcsin ⁡ x f(x)=\arcsin x f(x)=arcsinx f ′ ( x ) = 1 1 − x 2 f'(x)=\frac{1}{\sqrt{1-x^2}} f(x)=1x2 1
f ( x ) = arccos ⁡ x f(x)=\arccos x f(x)=arccosx f ′ ( x ) = 1 − 1 − x 2 f'(x)=\frac{1}{-\sqrt{1-x^2}} f(x)=1x2 1
f ( x ) = arctan ⁡ x f(x)=\arctan x f(x)=arctanx f ′ ( x ) = 1 1 + x 2 f'(x)=\frac{1}{1+x^2} f(x)=1+x21
f ( x ) = arccot  x f(x)=\text{arccot}~x f(x)=arccot x f ′ ( x ) = − 1 1 + x 2 f'(x)=-\frac{1}{1+x^2} f(x)=1+x21

常数函数

f ( x ) = C f(x)=C f(x)=C,其中 C C C 为常数,则 f ′ ( x ) = 0 f'(x)=0 f(x)=0

证明过程

f ′ ( x ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ x → x 0 C − C x − x 0 = lim ⁡ x → x 0 0 x − x 0 = 0 \begin{aligned}f'(x)&=\lim\limits_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}\\&=\lim\limits_{x\rightarrow x_0}\frac{C-C}{x-x_0}\\&=\lim\limits_{x\rightarrow x_0}\frac{0}{x-x_0}\\&=0\end{aligned} f(x)=xx0limxx0f(x)f(x0)=xx0limxx0CC=xx0limxx00=0

幂函数

f ( x ) = x μ f(x)=x^\mu f(x)=xμ,其中 μ ∈ R \mu\in\mathbb R μR,则 f ′ ( x ) = μ x μ − 1 f'(x)=\mu x^{\mu-1} f(x)=μxμ1

证明过程

f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 ( x + Δ x ) μ − x μ Δ x = lim ⁡ Δ x → 0 x μ [ ( 1 + Δ x x ) μ − 1 ] Δ x = lim ⁡ Δ x → 0 x μ − 1 [ ( 1 + Δ x x ) μ − 1 ] Δ x x = x μ − 1 lim ⁡ Δ x → 0 ( 1 + Δ x x ) μ − 1 Δ x x = x μ − 1 lim ⁡ Δ x → 0 μ Δ x x Δ x x = μ x μ − 1 \begin{aligned} f'(x)&=\lim\limits_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{(x+\Delta x)^\mu-x^\mu}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{x^\mu[(1+\frac{\Delta x}{x})^\mu-1]}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{x^{\mu-1}[(1+\frac{\Delta x}{x})^\mu-1]}{\frac{\Delta x}{x}}\\ &=x^{\mu-1}\lim\limits_{\Delta x\rightarrow 0}\frac{(1+\frac{\Delta x}{x})^\mu-1}{\frac{\Delta x}{x}}\\ &=x^{\mu-1}\lim\limits_{\Delta x\rightarrow 0}\frac{\mu\frac{\Delta x}{x}}{\frac{\Delta x}{x}}\\ &=\mu x^{\mu-1} \end{aligned} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔx(x+Δx)μxμ=Δx0limΔxxμ[(1+xΔx)μ1]=Δx0limxΔxxμ1[(1+xΔx)μ1]=xμ1Δx0limxΔx(1+xΔx)μ1=xμ1Δx0limxΔxμxΔx=μxμ1
常见等价无穷小 ( 1 + Δ x x ) μ − 1 ∼ μ Δ x x (1+\frac{\Delta x}{x})^\mu-1\sim\mu\frac{\Delta x}{x} (1+xΔx)μ1μxΔx

指数函数

f ( x ) = a x f(x)=a^x f(x)=ax,其中 a ∈ R , a > 0 , a ≠ 1 a\in\mathbb{R},a>0,a\neq 1 aR,a>0,a=1,则 f ′ ( x ) = a x ln ⁡ a f'(x)=a^x\ln a f(x)=axlna

证明过程

f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 a x + Δ x − a x Δ x = lim ⁡ Δ x → 0 a x ( a Δ x − 1 ) Δ x = a x lim ⁡ Δ x → 0 a Δ x − 1 Δ x = a x ln ⁡ a \begin{aligned} f'(x)&=\lim\limits_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{a^{x+\Delta x}-a^x}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{a^x(a^{\Delta x}-1)}{\Delta x}\\ &=a^x\lim\limits_{\Delta x\rightarrow 0}\frac{a^{\Delta x}-1}{\Delta x}\\ &=a^x\ln a \end{aligned} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔxax+Δxax=Δx0limΔxax(aΔx1)=axΔx0limΔxaΔx1=axlna
常见等价无穷小 a x − 1 ∼ x ln ⁡ a a^x-1\sim x\ln a ax1xlna

对数函数

f ( x ) = log ⁡ a x f(x)=\log_a x f(x)=logax,其中 a ∈ R , a > 0 , a ≠ 1 a\in\mathbb{R},a>0,a\neq 1 aR,a>0,a=1,则 f ′ ( x ) = 1 x ln ⁡ a f'(x)=\frac{1}{x\ln a} f(x)=xlna1

证明过程

f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 log ⁡ a ( x + Δ x ) − log ⁡ a x Δ x   = lim ⁡ Δ x → 0 log ⁡ a ( x + Δ x ) x Δ x = lim ⁡ Δ x → 0 log ⁡ a ( 1 + Δ x x ) x ⋅ Δ x x = 1 x lim ⁡ Δ x → 0 log ⁡ a ( 1 + Δ x x ) x Δ x = 1 x log ⁡ a lim ⁡ Δ x → 0 ( 1 + Δ x x ) x Δ x = 1 x log ⁡ a e = 1 x ln ⁡ a \begin{aligned} f'(x)&=\lim\limits_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\log_a(x+\Delta x)-\log_a x}{\Delta x}\\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\log_a\frac{(x+\Delta x)}{x}}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\log_a(1+\frac{\Delta x}{x})}{x\cdot \frac{\Delta x}{x}}\\ &=\frac{1}{x}\lim\limits_{\Delta x\rightarrow 0}\log_a(1+\frac{\Delta x}{x})^\frac{x}{\Delta x}\\ &=\frac{1}{x}\log_a\lim\limits_{\Delta x\rightarrow 0}(1+\frac{\Delta x}{x})^{\frac{x}{\Delta x}}\\ &=\frac{1}{x}\log_a e\\ &=\frac{1}{x\ln a} \end{aligned} f(x) =Δx0limΔxf(x+Δx)f(x)=Δx0limΔxloga(x+Δx)logax=Δx0limΔxlogax(x+Δx)=Δx0limxxΔxloga(1+xΔx)=x1Δx0limloga(1+xΔx)Δxx=x1logaΔx0lim(1+xΔx)Δxx=x1logae=xlna1
自然底数 e e e 的定义 lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim\limits_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=e x0lim(1+x)x1=e

三角函数

正弦函数

f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx,则 f ′ ( x ) = cos ⁡ x f'(x)=\cos x f(x)=cosx

证明过程

f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 sin ⁡ ( x + Δ x ) − sin ⁡ x Δ x = lim ⁡ Δ x → 0 2 cos ⁡ ( 2 x + Δ x 2 ) sin ⁡ ( Δ x 2 ) Δ x = lim ⁡ Δ x → 0 cos ⁡ ( x + Δ x 2 ) sin ⁡ Δ x 2 Δ x 2 = cos ⁡ x \begin{aligned} f'(x)&=\lim\limits_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\sin(x+\Delta x)-\sin x}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{2\cos(\frac{2x+\Delta x}{2})\sin(\frac{\Delta x}{2})}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\cos(x+\frac{\Delta x}{2})\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}\\ &=\cos x \end{aligned} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔxsin(x+Δx)sinx=Δx0limΔx2cos(22x+Δx)sin(2Δx)=Δx0lim2Δxcos(x+2Δx)sin2Δx=cosx
和差化积公式 sin ⁡ ( x + Δ x ) − sin ⁡ x = 2 cos ⁡ ( 2 x + Δ x 2 ) sin ⁡ Δ x 2 \sin(x+\Delta x)-\sin x=2\cos(\frac{2x+\Delta x}{2})\sin\frac{\Delta x}{2} sin(x+Δx)sinx=2cos(22x+Δx)sin2Δx
两个重要极限 lim ⁡ Δ x → 0 sin ⁡ Δ x 2 Δ x 2 = 1 \lim\limits_{\Delta x\rightarrow 0}\frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}=1 Δx0lim2Δxsin2Δx=1

余弦函数

f ( x ) = cos ⁡ x f(x)=\cos x f(x)=cosx,则 f ′ ( x ) = − sin ⁡ x f'(x)=-\sin x f(x)=sinx

证明过程

f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 cos ⁡ ( x + Δ x ) − cos ⁡ x Δ x = lim ⁡ Δ x → 0 − 2 sin ⁡ ( 2 x + Δ x 2 ) sin ⁡ ( Δ x 2 ) Δ x = lim ⁡ Δ x → 0 − sin ⁡ ( x + Δ x 2 ) sin ⁡ Δ x 2 Δ x 2 = sin ⁡ x \begin{aligned} f'(x)&=\lim\limits_{\Delta x\rightarrow 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{\cos(x+\Delta x)-\cos x}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{-2\sin(\frac{2x+\Delta x}{2})\sin(\frac{\Delta x}{2})}{\Delta x}\\ &=\lim\limits_{\Delta x\rightarrow 0}\frac{-\sin(x+\frac{\Delta x}{2})\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}\\ &=\sin x \end{aligned} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔxcos(x+Δx)cosx=Δx0limΔx2sin(22x+Δx)sin(2Δx)=Δx0lim2Δxsin(x+2Δx)sin2Δx=sinx
和差化积公式 cos ⁡ ( x + Δ x ) − cos ⁡ x = − 2 sin ⁡ ( 2 x + Δ x 2 ) sin ⁡ Δ x 2 \cos(x+\Delta x)-\cos x=-2\sin(\frac{2x+\Delta x}{2})\sin\frac{\Delta x}{2} cos(x+Δx)cosx=2sin(22x+Δx)sin2Δx
两个重要极限 lim ⁡ Δ x → 0 sin ⁡ Δ x 2 Δ x 2 = 1 \lim\limits_{\Delta x\rightarrow 0}\frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}=1 Δx0lim2Δxsin2Δx=1

正切函数

f ( x ) = tan ⁡ x f(x)=\tan x f(x)=tanx,则 f ′ ( x ) = sec ⁡ 2 x f'(x)=\sec^2 x f(x)=sec2x

证明过程

f ′ ( x ) = ( sin ⁡ x cos ⁡ x ) ′ = ( sin ⁡ x ) ′ cos ⁡ x − sin ⁡ x ( cos ⁡ x ) ′ cos ⁡ 2 x = c o s 2 x + s i n 2 x cos ⁡ 2 x = 1 cos ⁡ 2 x = sec ⁡ 2 x \begin{aligned} f'(x)&=(\frac{\sin x}{\cos x})'\\ &=\frac{(\sin x)'\cos x-\sin x(\cos x)'}{\cos^2x}\\ &=\frac{cos^2x+sin^2x}{\cos^2x}\\ &=\frac{1}{\cos^2x}\\ &=\sec^2x \end{aligned} f(x)=(cosxsinx)=cos2x(sinx)cosxsinx(cosx)=cos2xcos2x+sin2x=cos2x1=sec2x

反三角函数

反正弦函数

f ( x ) = arcsin ⁡ x f(x)=\arcsin x f(x)=arcsinx,则 f ′ ( x ) = 1 1 − x 2 f'(x)=\frac{1}{\sqrt{1-x^2}} f(x)=1x2 1

证明过程

f ′ ( x ) = 1 [ f − 1 ( y ) ] ′ = 1 [ sin ⁡ ( y ) ] ′ = 1 cos ⁡ y \begin{aligned} f'(x)&=\frac{1}{[f^{-1}(y)]'}\\ &=\frac{1}{[\sin(y)]'}\\ &=\frac{1}{\cos y} \end{aligned} f(x)=[f1(y)]1=[sin(y)]1=cosy1
∵ x = sin ⁡ y ,   sin ⁡ 2 y + cos ⁡ 2 y = 1 \because x=\sin y,~\sin^2y+\cos^2y=1 x=siny, sin2y+cos2y=1
∴ x 2 + cos ⁡ 2 y = 1 \therefore x^2+\cos^2y=1 x2+cos2y=1
∴ cos ⁡ y = ± 1 − x 2 \therefore \cos y=\pm\sqrt{1-x^2} cosy=±1x2
∵ y ∈ [ − π 2 ,   π 2 ] \because y\in[-\frac{\pi}{2},~\frac{\pi}{2}] y[2π, 2π]
∴ cos ⁡ y = 1 − x 2 \therefore \cos y=\sqrt{1-x^2} cosy=1x2
∴ f ′ ( x ) = 1 1 − x 2 \therefore f'(x)=\frac{1}{\sqrt{1-x^2}} f(x)=1x2 1

反余弦函数

f ( x ) = arccos ⁡ x f(x)=\arccos x f(x)=arccosx,则 f ′ ( x ) = − 1 1 − x 2 f'(x)=-\frac{1}{\sqrt{1-x^2}} f(x)=1x2 1

证明过程

f ′ ( x ) = 1 [ f − 1 ( y ) ] ′ = 1 ( cos ⁡ y ) ′ = 1 − sin ⁡ y = − 1 sin ⁡ y \begin{aligned} f'(x)&=\frac{1}{[f^{-1}(y)]'}\\ &=\frac{1}{(\cos y)'}\\ &=\frac{1}{-\sin y}\\ &=-\frac{1}{\sin y} \end{aligned} f(x)=[f1(y)]1=(cosy)1=siny1=siny1
∵ x = cos ⁡ y ,   sin ⁡ 2 y + cos ⁡ 2 y = 1 \because x=\cos y,~\sin^2y+\cos^2y=1 x=cosy, sin2y+cos2y=1
∴ sin ⁡ 2 y + x 2 = 1 \therefore \sin^2y+x^2=1 sin2y+x2=1
∴ sin ⁡ y = ± 1 − x 2 \therefore \sin y=\pm\sqrt{1-x^2} siny=±1x2
∵ y ∈ [ 0 ,   π ] \because y\in[0,~\pi] y[0, π]
∴ sin ⁡ y = 1 − x 2 \therefore \sin y=\sqrt{1-x^2} siny=1x2
∴ f ′ ( x ) = − 1 1 − x 2 \therefore f'(x)=-\frac{1}{\sqrt{1-x^2}} f(x)=1x2 1

反正切函数

f ( x ) = arctan ⁡ x f(x)=\arctan x f(x)=arctanx,则 f ′ ( x ) = 1 1 + x 2 f'(x)=\frac{1}{1+x^2} f(x)=1+x21

证明过程

f ′ ( x ) = 1 [ f − 1 ( y ) ] ′ = 1 ( tan ⁡ y ) ′ = 1 sec ⁡ 2 y \begin{aligned} f'(x)&=\frac{1}{[f^{-1}(y)]'}\\ &=\frac{1}{(\tan y)'}\\ &=\frac{1}{\sec^2y} \end{aligned} f(x)=[f1(y)]1=(tany)1=sec2y1
∵ x = tan ⁡ y ,   1 + tan ⁡ 2 y = sec ⁡ 2 y \because x=\tan y,~1+\tan^2y=\sec^2y x=tany, 1+tan2y=sec2y
∴ 1 + x 2 = sec ⁡ 2 y \therefore 1+x^2=\sec^2y 1+x2=sec2y
∴ f ′ ( x ) = 1 1 + x 2 \therefore f'(x)=\frac{1}{1+x^2} f(x)=1+x21

高阶导数

定义

函数 y = f ( x ) y=f(x) y=f(x) 可导,则

  • 二阶导数
    f ( x ) f(x) f(x) 的一阶导数 f ′ ( x ) f'(x) f(x) 可导,则 f ′ ( x ) f'(x) f(x) 的导数记作 f ′ ′ ( x ) f''(x) f′′(x) d d x ( d y d x ) = d 2 y d x \frac{d}{dx}(\frac{dy}{dx})=\frac{d^2y}{dx} dxd(dxdy)=dxd2y
  • 三阶导数
    f ( x ) f(x) f(x) 的二阶导数 f ′ ′ ( x ) f''(x) f′′(x) 可导,则 f ′ ′ ( x ) f''(x) f′′(x) 的导数记作 f ′ ′ ′ ( x ) f'''(x) f′′′(x) d 3 y d x \frac{d^3y}{dx} dxd3y
  • 四阶导数
    f ( x ) f(x) f(x) 的三阶导数 f ′ ′ ′ ( x ) f'''(x) f′′′(x) 可导,则 f ′ ′ ′ ( x ) f'''(x) f′′′(x) 的导数记作 f ( 4 ) ( x ) f^{(4)}(x) f(4)(x) d 4 y d x \frac{d^4y}{dx} dxd4y
  • n n n 阶导数
    f ( x ) f(x) f(x) n − 1 n-1 n1 阶导数 f ( n − 1 ) ( x ) f^{(n-1)}(x) f(n1)(x) 可导,则 f ( n − 1 ) ( x ) f^{(n-1)}(x) f(n1)(x) 的导数记作 f ( n ) ( x ) f^{(n)}(x) f(n)(x) d n y d x \frac{d^ny}{dx} dxdny

莱布尼茨公式

函数 u = u ( x ) ,   v = v ( x ) u=u(x),~v=v(x) u=u(x), v=v(x)
( u v ) ( n ) = u ( n ) v + n u ( n − 1 ) v ′ + n ( n − 1 ) 2 ! u ( n − 2 ) v ′ ′ + ⋯ + n ( n − 1 ) ⋯ ( n − k + 1 ) k ! u ( n − k ) v ( k ) + ⋯ + u v ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) \begin{aligned} (uv)^{(n)}&=u^{(n)}v+nu^{(n-1)}v'+\frac{n(n-1)}{2!}u^{(n-2)}v''+\cdots+\frac{n(n-1)\cdots(n-k+1)}{k!}u^{(n-k)}v^{(k)}+\cdots+uv^{(n)}\\ &=\sum\limits_{k=0}^{n}C_n^ku^{(n-k)}v^{(k)} \end{aligned} (uv)(n)=u(n)v+nu(n1)v+2!n(n1)u(n2)v′′++k!n(n1)(nk+1)u(nk)v(k)++uv(n)=k=0nCnku(nk)v(k)

常见函数高阶导数

  • ( sin ⁡ x ) ( n ) = sin ⁡ ( x + n ⋅ π 2 ) (\sin x)^{(n)}=\sin(x+n\cdot\frac{\pi}{2}) (sinx)(n)=sin(x+n2π)
  • ( cos ⁡ x ) ( n ) = cos ⁡ ( x + n ⋅ π 2 ) (\cos x)^{(n)}=\cos(x+n\cdot\frac{\pi}{2}) (cosx)(n)=cos(x+n2π)

参考

[1] 高等数学同济大学数学系高等教育出版社上册

猜你喜欢

转载自blog.csdn.net/qq_52554169/article/details/132295927