【高等数学笔记】Stolz定理

Stolz定理可以被理解为“数列的洛必达法则”,它揭示了两个数列之比的极限和相邻两项之差的比的极限的关系。

Stolz定理

∗ ∞ \cfrac{*}{\infty}

定理1 { a n } \{a_n\} { an} { b n } \{b_n\} { bn}是两个实数列,其中 { b n } \{b_n\} { bn}是严格单调的且趋向于无穷( + ∞ +\infty + − ∞ -\infty )。若极限 lim ⁡ n → ∞ a n + 1 − a n b n + 1 − b n = l \lim\limits_{n\to\infty}\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l nlimbn+1bnan+1an=l存在,则 lim ⁡ n → ∞ a n b n = l \lim\limits_{n\to\infty}\cfrac{a_n}{b_n}=l nlimbnan=l

证明: 不妨设 lim ⁡ n → ∞ b n = + ∞ \lim\limits_{n\to\infty}b_n=+\infty nlimbn=+,且 { b n } \{b_n\} { bn}严格单调递增。由 lim ⁡ n → ∞ a n + 1 − a n b n + 1 − b n = l \lim\limits_{n\to\infty}\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l nlimbn+1bnan+1an=l知, ∀ ε 2 > 0 \forall\cfrac{\varepsilon}{2}>0 2ε>0 ∃ N \exists N N,使得 ∀ n > N \forall n>N n>N,都有 ∣ a n + 1 − a n b n + 1 − b n − l ∣ < ε 2 \left|\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n}-l\right|<\frac{\varepsilon}{2} bn+1bnan+1anl <2ε l − ε 2 < a n + 1 − a n b n + 1 − b n < l + ε 2 l-\cfrac{\varepsilon}{2}<\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n}<l+\cfrac{\varepsilon}{2} l2ε<bn+1bnan+1an<l+2ε因为 { b n } \{b_n\} { bn}严格单调递增,所以 b n + 1 − b n > 0 b_{n+1}-b_n>0 bn+1bn>0。因此 ( l − ε 2 ) ( b n + 1 − b n ) < a n + 1 − a n < ( l + ε 2 ) ( b n + 1 − b n ) \left(l-\cfrac{\varepsilon}{2}\right)(b_{n+1}-b_n)<a_{n+1}-a_n<\left(l+\cfrac{\varepsilon}{2}\right)(b_{n+1}-b_n) (l2ε)(bn+1bn)<an+1an<(l+2ε)(bn+1bn)注意到 a n = ( a n − a n − 1 ) + ( a n − 1 + a n − 2 ) + ⋯ + ( a N + 2 − a N + 1 ) + a N + 1 a_n=(a_n-a_{n-1})+(a_{n-1}+a_{n-2})+\cdots+(a_{N+2}-a_{N+1})+a_{N+1} an=(anan1)+(an1+an2)++(aN+2aN+1)+aN+1,那么我们就可以给出 a n a_n an的下界: a N > ( l − ε 2 ) ( b n − b n − 1 ) + ( l − ε 2 ) ( b n − 1 − b n − 2 ) + ⋯ + ( l − ε 2 ) ( b N + 2 − b N + 1 ) + a N + 1 = ( l − ε 2 ) ( b n − b N + 1 ) + a N + 1 \begin{aligned} a_N&>\left(l-\cfrac{\varepsilon}{2}\right)(b_{n}-b_{n-1})+\left(l-\cfrac{\varepsilon}{2}\right)(b_{n-1}-b_{n-2})+\cdots+\left(l-\cfrac{\varepsilon}{2}\right)(b_{N+2}-b_{N+1})+a_{N+1}\\ &=\left(l-\cfrac{\varepsilon}{2}\right)(b_{n}-b_{N+1})+a_{N+1} \end{aligned} aN>(l2ε)(bnbn1)+(l2ε)(bn1bn2)++(l2ε)(bN+2bN+1)+aN+1=(l2ε)(bnbN+1)+aN+1同时也可以给出上界: a N < ( l + ε 2 ) ( b n − b N + 1 ) + a N + 1 a_N<\left(l+\cfrac{\varepsilon}{2}\right)(b_{n}-b_{N+1})+a_{N+1} aN<(l+2ε)(bnbN+1)+aN+1由于 lim ⁡ n → ∞ b n = + ∞ \lim\limits_{n\to\infty}b_n=+\infty nlimbn=+,故 ∃ N ′ \exists N' N,使得 ∀ n > N ′ \forall n>N' n>N,有 b n > 0 b_n>0 bn>0。(即 b n b_n bn在某项之后恒为正。)现在,对于 n > max ⁡ { N , N ′ } n>\max\{N,N'\} n>max{ N,N},给 a n a_n an的上下界两边除以 b n b_n bn ( l − ε 2 ) − ( l − ε 2 ) b N + 1 b n + a N + 1 b n < a n b n < ( l + ε 2 ) − ( l + ε 2 ) b N + 1 b n + a N + 1 b n \left(l-\cfrac{\varepsilon}{2}\right) \textcolor{blue}{-\left(l-\cfrac{\varepsilon}{2}\right)\frac{b_{N+1}}{b_{n}}+\cfrac{a_{N+1}}{b_{n}}} <\cfrac{a_n}{b_n}< \left(l+\cfrac{\varepsilon}{2}\right) \textcolor{green}{-\left(l+\cfrac{\varepsilon}{2}\right)\cfrac{b_{N+1}}{b_{n}}+\cfrac{a_{N+1}}{b_{n}}} (l2ε)(l2ε)bnbN+1+bnaN+1<bnan<(l+2ε)(l+2ε)bnbN+1+bnaN+1注意 − ( l − ε 2 ) b N + 1 b n + a N + 1 b n \textcolor{blue}{-\left(l-\cfrac{\varepsilon}{2}\right)\frac{b_{N+1}}{b_{n}}+\cfrac{a_{N+1}}{b_{n}}} (l2ε)bnbN+1+bnaN+1 − ( l + ε 2 ) b N + 1 b n + a N + 1 b n \textcolor{green}{-\left(l+\cfrac{\varepsilon}{2}\right)\cfrac{b_{N+1}}{b_{n}}+\cfrac{a_{N+1}}{b_{n}}} (l+2ε)bnbN+1+bnaN+1实际上是趋于 0 0 0的,即 ∀ ε 2 > 0 \forall\cfrac{\varepsilon}{2}>0 2ε>0,存在 N + > N ′ N_+>N' N+>N N − > N ′ N_->N' N>N,使得当 n > N ∗ = max ⁡ { N + , N − } n>N^*=\max\{N_+,N_-\} n>N=max{ N+,N}时,有 ∣ − ( l − ε 2 ) b N + 1 b n + a N + 1 b n ∣ < ε 2 ∣ − ( l + ε 2 ) b N + 1 b n + a N + 1 b n ∣ < ε 2 \left|\textcolor{blue}{-\left(l-\cfrac{\varepsilon}{2}\right)\frac{b_{N+1}}{b_{n}}+\cfrac{a_{N+1}}{b_{n}}}\right|<\cfrac{\varepsilon}{2}\\ \left|\textcolor{green}{-\left(l+\cfrac{\varepsilon}{2}\right)\cfrac{b_{N+1}}{b_{n}}+\cfrac{a_{N+1}}{b_{n}}}\right|<\cfrac{\varepsilon}{2} (l2ε)bnbN+1+bnaN+1 <2ε (l+2ε)bnbN+1+bnaN+1 <2ε l − ε = l − ε 2 − ε 2 < a n b n < l + ε 2 + ε 2 = l + ε l-\varepsilon=l-\cfrac{\varepsilon}{2}-\cfrac{\varepsilon}{2} < \cfrac{a_n}{b_n} < l+\cfrac{\varepsilon}{2}+\cfrac{\varepsilon}{2}=l+\varepsilon lε=l2ε2ε<bnan<l+2ε+2ε=l+ε因此,我们证明了: ∀ ε > 0 \forall\varepsilon>0 ε>0 ∃ N ∗ = max ⁡ { N + , N − } \exists N^*=\max\{N_+,N_-\} N=max{ N+,N},使得 ∀ n > N ∗ \forall n>N^* n>N,有 ∣ a n b n − l ∣ < ε \left|\cfrac{a_n}{b_n}-l\right|<\varepsilon bnanl <ε,即 lim ⁡ n → ∞ a n b n = l \lim\limits_{n\to\infty}\cfrac{a_n}{b_n}=l nlimbnan=l

0 0 \cfrac{0}{0} 00

定理2 { a n } \{a_n\} { an} { b n } \{b_n\} { bn}是两个实数列, lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = 0 \lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}b_n=0 nliman=nlimbn=0 b n b_n bn严格单调递减。若极限 lim ⁡ n → ∞ a n + 1 − a n b n + 1 − b n = l \lim\limits_{n\to\infty}\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l nlimbn+1bnan+1an=l存在,则 lim ⁡ n → ∞ a n b n = l \lim\limits_{n\to\infty}\cfrac{a_n}{b_n}=l nlimbnan=l

证明提要:将 a n a_n an写成 a n = ( a n − a n + 1 ) + ( a n + 1 − a n + 2 ) + ⋯ + ( a n − ν + 1 − a n + ν ) + a n + ν a_n=(a_{n}-a_{n+1})+(a_{n+1}-a_{n+2})+\cdots+(a_{n-\nu+1}-a_{n+\nu})+a_{n+\nu} an=(anan+1)+(an+1an+2)++(anν+1an+ν)+an+ν,然后给出 a n a_n an的上下界,两边同时除以 b n b_n bn,注意到 a n + ν a_{n+\nu} an+ν b n + ν b_{n+\nu} bn+ν趋于 0 0 0即可证明。

例子

1. 算术平均数的极限

我们要证明 lim ⁡ n → ∞ x 1 + x 2 + ⋯ + x n n = lim ⁡ n → ∞ x n \lim\limits_{n\to\infty}\cfrac{x_1+x_2+\cdots+x_n}{n}=\lim\limits_{n\to\infty}x_n nlimnx1+x2++xn=nlimxn

定义 a n = x 1 + x 2 + ⋯ + x n a_n=x_1+x_2+\cdots+x_n an=x1+x2++xn b n = n b_n=n bn=n。则要证 lim ⁡ n → ∞ a n b n = lim ⁡ n → ∞ x n \lim\limits_{n\to\infty}\cfrac{a_n}{b_n}=\lim\limits_{n\to\infty}x_n nlimbnan=nlimxn。注意到 a n + 1 − a n = x n a_{n+1}-a_{n}=x_n an+1an=xn b n + 1 − b n = 1 b_{n+1}-b_{n}=1 bn+1bn=1,现在该怎么做应该很明显了。

2.

lim ⁡ n → ∞ [ ( n + 1 ) ! n + 1 − n ! n ] \lim\limits_{n\to\infty}\left[\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}\right] nlim[n+1(n+1)! nn! ]

a n = n ! n a_n=\sqrt[n]{n!} an=nn! b n = n b_n=n bn=n,则 lim ⁡ n → ∞ [ ( n + 1 ) ! n + 1 − n ! n ] = lim ⁡ n → ∞ a n + 1 − a n b n + 1 − b n = lim ⁡ n → ∞ a n b n = lim ⁡ n → ∞ n ! n n \lim\limits_{n\to\infty}\left[\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}\right]=\lim\limits_{n\to\infty}\cfrac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=\lim\limits_{n\to\infty}\cfrac{a_{n}}{b_{n}}=\lim\limits_{n\to\infty}\frac{\sqrt[n]{n!}}{n} nlim[n+1(n+1)! nn! ]=nlimbn+1bnan+1an=nlimbnan=nlimnnn! 根据Stirling公式, n ! ∼ 2 π n ( n e ) n n!\sim\sqrt{2\pi n}{\left(\cfrac{n}{e}\right)}^n n!2πn (en)n,故 lim ⁡ n → ∞ n ! n n = lim ⁡ n → ∞ ( 2 π n ) 1 2 n ⋅ n e n = 1 e \lim\limits_{n\to\infty}\frac{\sqrt[n]{n!}}{n}=\lim\limits_{n\to\infty}\cfrac{ {(2\pi n)}^{\frac{1}{2n}}\cdot \cfrac{n}{e}}{n}=\cfrac{1}{e} nlimnnn! =nlimn(2πn)2n1en=e1

猜你喜欢

转载自blog.csdn.net/qaqwqaqwq/article/details/130511511
今日推荐