[学习笔记] 二项式反演

  • 由于某种原因这篇文章到现在才被发出来。
  • 其实本质上是容斥,虽然我之前一直不是很理解这个容斥。
  • 给定 k N k \in \mathbb N ,则存在以下关系式: g k = i = k n ( i k ) f i f k = i = k n ( 1 ) i k ( i k ) g i g_k = \sum \limits_{i = k}^{n} \binom{i}{k}f_i \Leftrightarrow f_k = \sum \limits_{i = k}^{n} (-1)^{i - k} \binom{i}{k}g_i
  • 证明:
    i = k n ( 1 ) i k ( i k ) g i = i = k n ( 1 ) i k ( i k ) j = i n ( j i ) f j = j = k n f j i = k j ( 1 ) i k ( i k ) ( j i ) = j = k n f j i = k j ( 1 ) i k ( j k ) ( j k i k ) = j = k n ( j k ) f j i = 0 j k ( 1 ) i ( j k i ) = j = k n ( j k ) f j ( 1 1 ) j k \begin{aligned} \sum \limits_{i = k}^{n} (-1)^{i - k} \binom{i}{k}g_i &= \sum \limits_{i = k}^{n}(-1)^{i - k} \binom{i}{k} \sum \limits_{j = i}^{n} \binom{j}{i} f_j \\ &= \sum \limits_{j = k}^{n} f_j\sum \limits_{i = k}^{j} (-1)^{i - k} \binom{i}{k}\binom{j}{i}\\ &= \sum \limits_{j = k}^{n} f_j\sum \limits_{i = k}^{j} (-1)^{i - k} \binom{j}{k}\binom{j - k}{i - k}\\ &= \sum \limits_{j = k}^{n} \binom{j}{k} f_j \sum \limits_{i = 0}^{j - k} (-1)^{i} \binom{j - k}{i}\\ &= \sum \limits_{j = k}^{n} \binom{j}{k} f_j (1 - 1)^{j - k}\\ \end{aligned}
  • 当且仅当 j = k j = k 时, ( 1 1 ) j k (1 - 1)^{j - k} 1 1 ,其余情况下均为 0 0
  • 所以原式即为 f k f_k
发布了104 篇原创文章 · 获赞 125 · 访问量 2万+

猜你喜欢

转载自blog.csdn.net/bzjr_Log_x/article/details/103450967