【机器学习】单变量线性回归和多变量线性回归

版权声明:转载请加上链接 https://blog.csdn.net/qq_29407397/article/details/89604026

机器学习练习 1 - 线性回归

单变量线性回归

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
path =  'ex1data1.txt'
data = pd.read_csv(path, header=None, names=['Population', 'Profit'])
data.head()
Population Profit
0 6.1101 17.5920
1 5.5277 9.1302
2 8.5186 13.6620
3 7.0032 11.8540
4 5.8598 6.8233
data.describe()
Population Profit
count 97.000000 97.000000
mean 8.159800 5.839135
std 3.869884 5.510262
min 5.026900 -2.680700
25% 5.707700 1.986900
50% 6.589400 4.562300
75% 8.578100 7.046700
max 22.203000 24.147000

看下数据长什么样子

data.plot(kind='scatter', x='Population', y='Profit', figsize=(12,8))
plt.show()

在这里插入图片描述

现在让我们使用梯度下降来实现线性回归,以最小化成本函数。 以下代码示例中实现的方程在“练习”文件夹中的“ex1.pdf”中有详细说明。

首先,我们将创建一个以参数θ为特征函数的代价函数
J ( θ ) = 1 2 m i = 1 m ( h θ ( x ( i ) ) y ( i ) ) 2 J\left( \theta \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}}
其中:\[{{h}{\theta }}\left( x \right)={{\theta }^{T}}X={{\theta }{0}}{{x}{0}}+{{\theta }{1}}{{x}{1}}+{{\theta }{2}}{{x}{2}}+…+{{\theta }{n}}{{x}_{n}}\]

def computeCost(X, y, theta):
    inner = np.power(((X * theta.T) - y), 2)
    return np.sum(inner) / (2 * len(X))

让我们在训练集中添加一列,以便我们可以使用向量化的解决方案来计算代价和梯度。

data.insert(0, 'Ones', 1)

现在我们来做一些变量初始化。

# set X (training data) and y (target variable)
cols = data.shape[1]
X = data.iloc[:,0:cols-1]#X是所有行,去掉最后一列
y = data.iloc[:,cols-1:cols]#X是所有行,最后一列

观察下 X (训练集) and y (目标变量)是否正确.

X.head()#head()是观察前5行
Ones Population
0 1 6.1101
1 1 5.5277
2 1 8.5186
3 1 7.0032
4 1 5.8598
y.head()
Profit
0 17.5920
1 9.1302
2 13.6620
3 11.8540
4 6.8233

代价函数是应该是numpy矩阵,所以我们需要转换X和Y,然后才能使用它们。 我们还需要初始化theta。

X = np.matrix(X.values)
y = np.matrix(y.values)
theta = np.matrix(np.array([0,0]))

theta 是一个(1,2)矩阵

theta
matrix([[0, 0]])

看下维度

X.shape, theta.shape, y.shape
((97, 2), (1, 2), (97, 1))

计算代价函数 (theta初始值为0).

computeCost(X, y, theta)
32.072733877455676

batch gradient decent(批量梯度下降)

θ j : = θ j α θ j J ( θ ) {{\theta }_{j}}:={{\theta }_{j}}-\alpha \frac{\partial }{\partial {{\theta }_{j}}}J\left( \theta \right)

def gradientDescent(X, y, theta, alpha, iters):
    temp = np.matrix(np.zeros(theta.shape))
    parameters = int(theta.ravel().shape[1])
    cost = np.zeros(iters)
    
    for i in range(iters):
        error = (X * theta.T) - y
        
        for j in range(parameters):
            term = np.multiply(error, X[:,j])
            temp[0,j] = theta[0,j] - ((alpha / len(X)) * np.sum(term))
            
        theta = temp
        cost[i] = computeCost(X, y, theta)
        
    return theta, cost

初始化一些附加变量 - 学习速率α和要执行的迭代次数。

alpha = 0.01
iters = 1000

现在让我们运行梯度下降算法来将我们的参数θ适合于训练集。

g, cost = gradientDescent(X, y, theta, alpha, iters)
g
matrix([[-3.24140214,  1.1272942 ]])

最后,我们可以使用我们拟合的参数计算训练模型的代价函数(误差)。

computeCost(X, y, g)
4.5159555030789118

现在我们来绘制线性模型以及数据,直观地看出它的拟合。

x = np.linspace(data.Population.min(), data.Population.max(), 100)
f = g[0, 0] + (g[0, 1] * x)

fig, ax = plt.subplots(figsize=(12,8))
ax.plot(x, f, 'r', label='Prediction')
ax.scatter(data.Population, data.Profit, label='Traning Data')
ax.legend(loc=2)
ax.set_xlabel('Population')
ax.set_ylabel('Profit')
ax.set_title('Predicted Profit vs. Population Size')
plt.show()

png

由于梯度方程式函数也在每个训练迭代中输出一个代价的向量,所以我们也可以绘制。 请注意,代价总是降低 - 这是凸优化问题的一个例子。

fig, ax = plt.subplots(figsize=(12,8))
ax.plot(np.arange(iters), cost, 'r')
ax.set_xlabel('Iterations')
ax.set_ylabel('Cost')
ax.set_title('Error vs. Training Epoch')
plt.show()

在这里插入图片描述

多变量线性回归

练习1还包括一个房屋价格数据集,其中有2个变量(房子的大小,卧室的数量)和目标(房子的价格)。 我们使用我们已经应用的技术来分析数据集。

path =  'ex1data2.txt'
data2 = pd.read_csv(path, header=None, names=['Size', 'Bedrooms', 'Price'])
data2.head()
Size Bedrooms Price
0 2104 3 399900
1 1600 3 329900
2 2400 3 369000
3 1416 2 232000
4 3000 4 539900

对于此任务,我们添加了另一个预处理步骤 - 特征归一化。 这个对于pandas来说很简单

data2 = (data2 - data2.mean()) / data2.std()
data2.head()
Size Bedrooms Price
0 0.130010 -0.223675 0.475747
1 -0.504190 -0.223675 -0.084074
2 0.502476 -0.223675 0.228626
3 -0.735723 -1.537767 -0.867025
4 1.257476 1.090417 1.595389

现在我们重复第1部分的预处理步骤,并对新数据集运行线性回归程序。

# add ones column
data2.insert(0, 'Ones', 1)

# set X (training data) and y (target variable)
cols = data2.shape[1]
X2 = data2.iloc[:,0:cols-1]
y2 = data2.iloc[:,cols-1:cols]

# convert to matrices and initialize theta
X2 = np.matrix(X2.values)
y2 = np.matrix(y2.values)
theta2 = np.matrix(np.array([0,0,0]))

# perform linear regression on the data set
g2, cost2 = gradientDescent(X2, y2, theta2, alpha, iters)

# get the cost (error) of the model
computeCost(X2, y2, g2)
0.13070336960771892

我们也可以快速查看这一个的训练进程。

fig, ax = plt.subplots(figsize=(12,8))
ax.plot(np.arange(iters), cost2, 'r')
ax.set_xlabel('Iterations')
ax.set_ylabel('Cost')
ax.set_title('Error vs. Training Epoch')
plt.show()

png

我们也可以使用scikit-learn的线性回归函数,而不是从头开始实现这些算法。 我们将scikit-learn的线性回归算法应用于第1部分的数据,并看看它的表现。

from sklearn import linear_model
model = linear_model.LinearRegression()
model.fit(X, y)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

scikit-learn model的预测表现

x = np.array(X[:, 1].A1)
f = model.predict(X).flatten()

fig, ax = plt.subplots(figsize=(12,8))
ax.plot(x, f, 'r', label='Prediction')
ax.scatter(data.Population, data.Profit, label='Traning Data')
ax.legend(loc=2)
ax.set_xlabel('Population')
ax.set_ylabel('Profit')
ax.set_title('Predicted Profit vs. Population Size')
plt.show()

在这里插入图片描述

4. normal equation(正规方程)

正规方程是通过求解下面的方程来找出使得代价函数最小的参数的: θ j J ( θ j ) = 0 \frac{\partial }{\partial {{\theta }_{j}}}J\left( {{\theta }_{j}} \right)=0
假设我们的训练集特征矩阵为 X(包含了 x 0 = 1 {{x}_{0}}=1 )并且我们的训练集结果为向量 y,则利用正规方程解出向量 θ = ( X T X ) 1 X T y \theta ={{\left( {{X}^{T}}X \right)}^{-1}}{{X}^{T}}y
上标T代表矩阵转置,上标-1 代表矩阵的逆。设矩阵 A = X T X A={{X}^{T}}X ,则: ( X T X ) 1 = A 1 {{\left( {{X}^{T}}X \right)}^{-1}}={{A}^{-1}}

梯度下降与正规方程的比较:

梯度下降:需要选择学习率α,需要多次迭代,当特征数量n大时也能较好适用,适用于各种类型的模型

正规方程:不需要选择学习率α,一次计算得出,需要计算 ( X T X ) 1 {{\left( {{X}^{T}}X \right)}^{-1}} ,如果特征数量n较大则运算代价大,因为矩阵逆的计算时间复杂度为 O ( n 3 ) O(n3) ,通常来说当 n n 小于10000 时还是可以接受的,只适用于线性模型,不适合逻辑回归模型等其他模型

# 正规方程
def normalEqn(X, y):
    theta = np.linalg.inv(X.T@X)@X.T@y#X.T@X等价于X.T.dot(X)
    return theta
final_theta2=normalEqn(X, y)#感觉和批量梯度下降的theta的值有点差距
final_theta2
matrix([[-3.89578088],
        [ 1.19303364]])
#梯度下降得到的结果是matrix([[-3.24140214,  1.1272942 ]])

在练习2中,我们将看看分类问题的逻辑回归。


猜你喜欢

转载自blog.csdn.net/qq_29407397/article/details/89604026