任务1-线性回归算法梳理

目录

1. 机器学习的一些概念 有监督、无监督、泛化能力、过拟合欠拟合(方差和偏差以及各自解决办法)、交叉验证

2. 线性回归的原理

2.1简述

3. 线性回归损失函数、代价函数、目标函数

4. 优化方法(梯度下降法、牛顿法、拟牛顿法等)

4.1 梯度下降法(Gradient Descent)

4.2 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)

4.3 共轭梯度法(Conjugate Gradient)

4.4 启发式优化方法

 4.5 解决约束优化问题——拉格朗日乘数法

扫描二维码关注公众号,回复: 5770271 查看本文章

5. 线性回归的评估指标

6. sklearn参数详解


1. 机器学习的一些概念 有监督、无监督、泛化能力、过拟合欠拟合(方差和偏差以及各自解决办法)、交叉验证

有监督:用于训练的数据集有groundtruth,数据集已标注;
无监督:用于训练数据集无标注;
泛化能力:是指机器学习算法对新鲜样本的适应能力。学习的目的是学到隐含在数据对背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出,该能力称为泛化能力。
过拟合:对训练数据过分依赖,产生了高拟合度,但是对于测试数据的分类结果较差;
欠拟合:是和过拟合相对的现象,可以说是模型的复杂度较低,没法很好的学习到数据背后的规律。
交叉验证:是一种统计学上将数据样本切割成较小子集的实用方法,因数据集的样本数有限,于是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set or test set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标。
 

2. 线性回归的原理

2.1简述


     在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合(自变量都是一次方)。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。

优点:结果易于理解,计算上不复杂。
缺点:对非线性数据拟合不好。
适用数据类型:数值型和标称型数据。
算法类型:回归算法

线性回归的模型函数如下:

 

通过训练数据集寻找参数的最优解,即求解可以得到minJ(θ) 的参数向量θ ,其中这里的参数向量也可以分为参数和w和b 和w和b和w和b,分别表示权重和偏置值。
 

3. 线性回归损失函数、代价函数、目标函数

损失函数:计算的是一个样本的误差

代价函数:是整个训练集上所有样本误差的平均

目标函数:代价函数 + 正则化项

实际应用:

损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念,举例说明:

上面三个图的曲线函数依次为f1(x),f2(x),f3(x),我们想用这三个函数分别来拟合真实值Y。

我们给定x,这三个函数都会输出一个f(X),这个输出的f(X)与真实值Y可能是相同的,也可能是不同的,为了表示我们拟合的好坏,我们就用一个函数来度量拟合的程度。这个函数就称为损失函数(loss function),或者叫代价函数(cost function)。

损失函数越小,就代表模型拟合的越好。那是不是我们的目标就只是让loss function越小越好呢?还不是。这个时候还有一个概念叫风险函数(risk function)。风险函数是损失函数的期望,这是由于我们输入输出的(X,Y)遵循一个联合分布,但是这个联合分布是未知的,所以无法计算。但是我们是有历史数据的,就是我们的训练集,f(X)关于训练集的平均损失称作经验风险(empirical risk),所以我们的目标就是最小化经验风险。

到这里完了吗?还没有。

如果到这一步就完了的话,那我们看上面的图,那肯定是最右面的f3(x)的经验风险函数最小了,因为它对历史的数据拟合的最好嘛。但是我们从图上来看它肯定不是最好的,因为它过度学习历史数据,导致它在真正预测时效果会很不好,这种情况称为过拟合(over-fitting)。为什么会造成这种结果?大白话说就是它的函数太复杂了,都有四次方了,这就引出了下面的概念,我们不仅要让经验风险最小化,还要让结构风险最小化。

这个时候就定义了一个函数J(f),这个函数专门用来度量模型的复杂度,在机器学习中也叫正则化(regularization)。常用的有L1, L2范数。到这一步我们就可以说我们最终的优化函数是: 

即最优化经验风险和结构风险,而这个函数就被称为目标函数。

4. 优化方法(梯度下降法、牛顿法、拟牛顿法等)

   我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等。最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。随着学习的深入,博主越来越发现最优化方法的重要性,学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。常见的最优化方法有梯度下降法、牛顿法和拟牛顿法、共轭梯度法等等。

4.1 梯度下降法(Gradient Descent)

    梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下降法越接近目标值,步长越小,前进越慢。梯度下降法的搜索迭代示意图如下图所示:

梯度下降法的缺点:

  (1)靠近极小值时收敛速度减慢,如下图所示;

  (2)直线搜索时可能会产生一些问题;

  (3)可能会“之字形”地下降。

 

    从上图可以看出,梯度下降法在接近最优解的区域收敛速度明显变慢,利用梯度下降法求解需要很多次的迭代。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。比如对一个线性回归(Linear Logistics)模型,假设下面的h(x)是要拟合的函数,J(theta)为损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了。其中m是训练集的样本个数,n是特征的个数。

 

1)批量梯度下降法(Batch Gradient Descent,BGD)

(1)将J(theta)对theta求偏导,得到每个theta对应的的梯度:

(2)由于是要最小化风险函数,所以按每个参数theta的梯度负方向,来更新每个theta:

(3)从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数据,如果m很大,那么可想而知这种方法的迭代速度会相当的慢。所以,这就引入了另外一种方法——随机梯度下降。

对于批量梯度下降法,样本个数m,x为n维向量,一次迭代需要把m个样本全部带入计算,迭代一次计算量为m*n2。

2)随机梯度下降(Stochastic Gradient Descent,SGD)

(1)上面的风险函数可以写成如下这种形式,损失函数对应的是训练集中每个样本的粒度,而上面批量梯度下降对应的是所有的训练样本:

(2)每个样本的损失函数,对theta求偏导得到对应梯度,来更新theta:

(3)随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将theta迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。

随机梯度下降每次迭代只使用一个样本,迭代一次计算量为n2,当样本个数m很大的时候,随机梯度下降迭代一次的速度要远高于批量梯度下降方法。两者的关系可以这样理解:随机梯度下降方法以损失很小的一部分精确度和增加一定数量的迭代次数为代价,换取了总体的优化效率的提升。增加的迭代次数远远小于样本的数量。

对批量梯度下降法和随机梯度下降法的总结:

批量梯度下降---最小化所有训练样本的损失函数,使得最终求解的是全局的最优解,即求解的参数是使得风险函数最小,但是对于大规模样本问题效率低下。

随机梯度下降---最小化每条样本的损失函数,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近,适用于大规模训练样本情况。

4.2 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)

  1)牛顿法(Newton's method)

  牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数(x)的泰勒级数的前面几项来寻找方程(x) = 0的根。牛顿法最大的特点就在于它的收敛速度很快。

  具体步骤:

  首先,选择一个接近函数 (x)零点的 x0,计算相应的 (x0) 和切线斜率f  ' (x0)(这里f ' 表示函数 f  的导数)。然后我们计算穿过点(x0,  f  (x0)) 并且斜率为'(x0)的直线和 轴的交点的x坐标,也就是求如下方程的解:

  我们将新求得的点的 坐标命名为x1,通常x1会比x0更接近方程f  (x) = 0的解。因此我们现在可以利用x1开始下一轮迭代。迭代公式可化简为如下所示:

  已经证明,如果f  ' 是连续的,并且待求的零点x是孤立的,那么在零点x周围存在一个区域,只要初始值x0位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果f  ' (x)不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。下图为一个牛顿法执行过程的例子。

  由于牛顿法是基于当前位置的切线来确定下一次的位置,所以牛顿法又被很形象地称为是"切线法"。牛顿法的搜索路径(二维情况)如下图所示:

  牛顿法搜索动态示例图:

 

关于牛顿法和梯度下降法的效率对比:

  从本质上去看,牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位置选一个坡度最大的方向走一步,牛顿法在选择方向时,不仅会考虑坡度是否够大,还会考虑你走了一步之后,坡度是否会变得更大。所以,可以说牛顿法比梯度下降法看得更远一点,能更快地走到最底部。(牛顿法目光更加长远,所以少走弯路;相对而言,梯度下降法只考虑了局部的最优,没有全局思想。)

  根据wiki上的解释,从几何上说,牛顿法就是用一个二次曲面去拟合你当前所处位置的局部曲面,而梯度下降法是用一个平面去拟合当前的局部曲面,通常情况下,二次曲面的拟合会比平面更好,所以牛顿法选择的下降路径会更符合真实的最优下降路径。

 

注:红色的牛顿法的迭代路径,绿色的是梯度下降法的迭代路径。

牛顿法的优缺点总结:

  优点:二阶收敛,收敛速度快;

  缺点:牛顿法是一种迭代算法,每一步都需要求解目标函数的Hessian矩阵的逆矩阵,计算比较复杂。

  2)拟牛顿法(Quasi-Newton Methods)

  拟牛顿法是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W.C.Davidon所提出来。Davidon设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。

  拟牛顿法的本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hessian矩阵的逆,从而简化了运算的复杂度。拟牛顿法和最速下降法一样只要求每一步迭代时知道目标函数的梯度。通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。这类方法大大优于最速下降法,尤其对于困难的问题。另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法更为有效。如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。

  具体步骤:

  拟牛顿法的基本思想如下。首先构造目标函数在当前迭代xk的二次模型:

  这里Bk是一个对称正定矩阵,于是我们取这个二次模型的最优解作为搜索方向,并且得到新的迭代点:

  其中我们要求步长ak 满足Wolfe条件。这样的迭代与牛顿法类似,区别就在于用近似的Hesse矩阵Bk  

代替真实的Hesse矩阵。所以拟牛顿法最关键的地方就是每一步迭代中矩阵Bk

 的更新。现在假设得到一个新的迭代xk+1,并得到一个新的二次模型:

  我们尽可能地利用上一步的信息来选取Bk。具体地,我们要求 

  从而得到

  这个公式被称为割线方程。常用的拟牛顿法有DFP算法和BFGS算法。

4.3 共轭梯度法(Conjugate Gradient)

   共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。

  具体的实现步骤请参加wiki百科共轭梯度法

  下图为共轭梯度法和梯度下降法搜索最优解的路径对比示意图:

注:绿色为梯度下降法,红色代表共轭梯度法

4.4 启发式优化方法

  启发式方法指人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案。启发式优化方法种类繁多,包括经典的模拟退火方法、遗传算法、蚁群算法以及粒子群算法等等。

  还有一种特殊的优化算法被称之多目标优化算法,它主要针对同时优化多个目标(两个及两个以上)的优化问题,这方面比较经典的算法有NSGAII算法、MOEA/D算法以及人工免疫算法等。

 4.5 解决约束优化问题——拉格朗日乘数法

  有关拉格朗日乘数法的介绍请见另一篇博客:《拉格朗日乘数法》

5. 线性回归的评估指标

分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared。下面一一介绍

均方误差(MSE)
MSE (Mean Squared Error)叫做均方误差。看公式 
 
这里的y是测试集上的。

用 真实值-预测值 然后平方之后求和平均。

猛着看一下这个公式是不是觉得眼熟,这不就是线性回归的损失函数嘛!!! 对,在线性回归的时候我们的目的就是让这个损失函数最小。那么模型做出来了,我们把损失函数丢到测试集上去看看损失值不就好了嘛。简单直观暴力!

均方根误差(RMSE)
RMSE(Root Mean Squard Error)均方根误差。 
 
这不就是MSE开个根号么。有意义么?其实实质是一样的。只不过用于数据更好的描述。 
例如:要做房价预测,每平方是万元(真贵),我们预测结果也是万元。那么差值的平方单位应该是 千万级别的。那我们不太好描述自己做的模型效果。怎么说呢?我们的模型误差是 多少千万?。。。。。。于是干脆就开个根号就好了。我们误差的结果就跟我们数据是一个级别的可,在描述模型的时候就说,我们模型的误差是多少万元。

MAE
MAE(平均绝对误差) 
 
不用解释了吧。

R Squared
上面的几种衡量标准针对不同的模型会有不同的值。比如说预测房价 那么误差单位就是万元。数子可能是3,4,5之类的。那么预测身高就可能是0.1,0.6之类的。没有什么可读性,到底多少才算好呢?不知道,那要根据模型的应用场景来。 
看看分类算法的衡量标准就是正确率,而正确率又在0~1之间,最高百分之百。最低0。如果是负数,则考虑非线性相关。很直观,而且不同模型一样的。那么线性回归有没有这样的衡量标准呢?答案是有的。 
那就是R Squared也就R方 
 
光看这些东西很懵逼,其中分子是Residual Sum of Squares 分母是 Total Sum of Squares 
那就看公式吧 


懵逼(X2)

慢慢解释。其实这个很简单。 
上面分子就是我们训练出的模型预测的所有误差。 
下面分母就是不管什么我们猜的结果就是y的平均数。(瞎猜的误差)

那结果就来了。 
如果结果是0,就说明我们的模型跟瞎猜差不多。 
如果结果是1。就说明我们模型无错误。 
如果结果是0-1之间的数,就是我们模型的好坏程度。 
如果结果是负数。说明我们的模型还不如瞎猜。(其实导致这种情况说明我们的数据其实没有啥线性关系)

化简上面的公式 
分子分母同时除以m 
 
那么分子就变成了我们的均方误差MSE,下面分母就变成了方差。 


代码部分
具体模型代码就不给了。只说这个几种衡量标准的原始代码。

MSE

y_preditc=reg.predict(x_test) #reg是训练好的模型
mse_test=np.sum((y_preditc-y_test)**2)/len(y_test) #跟数学公式一样的

RMDE

rmse_test=mse_test ** 0.5

MAE

mae_test=np.sum(np.absolute(y_preditc-y_test))/len(y_test)

 R Squared

1- mean_squared_error(y_test,y_preditc)/ np.var(y_test)

6. sklearn参数详解

scikit-learn中的各种衡量指标

from sklearn.metrics import mean_squared_error #均方误差
from sklearn.metrics import mean_absolute_error #平方绝对误差
from sklearn.metrics import r2_score#R square
#调用
mean_squared_error(y_test,y_predict)
mean_absolute_error(y_test,y_predict)
r2_score(y_test,y_predict)

参考:西瓜书    

       cs229吴恩达机器学习课程  

         李航统计学习        

    谷歌搜索 公式推导参考:http://t.cn/EJ4F9Q0

猜你喜欢

转载自blog.csdn.net/yanyiting666/article/details/88900929