MIT_单变量微积分_18

版权声明: https://blog.csdn.net/qq_38386316/article/details/88626496

1.微积分第二基本定理

均值定理:
Δ F = F ( b ) F ( a ) , Δ x = b a Δ F = a b f ( x ) d x ( F T C 1 ) Δ F Δ x = 1 b a a b f ( x ) d x , f Δ F = A v g ( F ) Δ x ( m a x F ) Δ x ( m i n F ) Δ x Δ F = F ( c ) Δ x ( M V T ) ( m a x F ) Δ x \Delta F=F(b)-F(a),\Delta x = b- a\\ \Delta F= \int_a^bf(x)dx(FTC1)\\ \frac{\Delta F}{\Delta x}=\frac{1}{b-a}\int_a^bf(x)dx,相等于将f平分。\\ \Delta F=Avg(F')\cdot\Delta x \leq(maxF')\Delta x\\ (minF')\Delta x \leq \Delta F=F'(c)\Delta x(MVT) \leq (maxF')\Delta x

Ex: F ( x ) = 1 x + 1 , F ( 0 ) = 1 F'(x)=\frac{1}{x+1},F(0)=1 ,由均值定理推断可知: A < F ( 4 ) < B A<F(4)<B , A B A和B 分别等于多少?
F ( 4 ) F ( 0 ) = F ( C ) ( 4 0 ) = 1 c + 1 4 1 1 + 4 = 4 5 1 c + 1 4 4 = 1 1 + 0 4 9 5 F ( 4 ) 5 F(4)-F(0)=F'(C)*(4-0)=\frac{1}{c+1} \cdot 4\\ \frac{1}{1+4}=\frac{4}{5} \leq \frac{1}{c+1} \cdot 4 \leq 4= \frac{1}{1+0} \cdot 4\\ \frac{9}{5} \leq F(4) \leq5

  • 解释-FTC1:
    F ( 4 ) F ( 0 ) = 0 4 1 1 + x d x < 0 4 d x = 4 F(4)-F(0)=\int_0^4\frac{1}{1+x}dx <\int_0^4dx=4
    F ( 4 ) F ( 0 ) = 0 4 1 1 + x d x > 0 4 1 5 d x = 4 5 F(4)-F(0)=\int_0^4\frac{1}{1+x}dx > \int_0^4\frac{1}{5}dx=\frac{4}{5}
    几何意义: < < 下黎曼和<黎曼和<上黎曼和
    在这里插入图片描述
    FTC2:已知函数 f f 是连续的, G ( x ) = a x f ( t ) d t ( a t x ) , G ( x ) = f ( x ) , G ( x ) G(x)=\int _a^xf(t)dt(a\leq t \leq x),G'(x)=f(x),G(x)可解出方程
    { y = f y ( a ) = 0 \left\{\begin{matrix} y'=f& \\ y(a)=0& \end{matrix}\right.
    Ex: d d x 1 x d t t 2 = 1 x 2 \frac{d}{dx}\int_1^x\frac{dt}{t^2}=\frac{1}{x^2}
    在这里插入图片描述
    Δ G Δ x f ( x ) \Delta G\approx \Delta xf(x)
    lim Δ x 0 Δ G Δ x = f ( x ) \lim_{\Delta x\to 0}{\frac{\Delta G}{\Delta x}}=f(x)

FTC1 证明:
F = f , f G ( x ) = a x f ( t ) d t F T C 2 G ( x ) = f ( x ) F ( x ) = G ( x ) F ( x ) = G ( x ) + C F ( b ) F ( a ) = ( G ( b ) + C ) ( G ( a ) + C ) = G ( b ) G ( a ) = a b f ( x ) d x 0 F'=f,假设f连续\\ G(x)=\int_a^xf(t)dt\\ 由FTC2 \Rightarrow G'(x)=f(x)\\ F'(x)=G'(x) \Rightarrow F(x)=G(x) +C\\ F(b)-F(a)=(G(b)+C)-(G(a)+C)\\ =G(b)-G(a)\\ =\int_a^bf(x)dx-0

Ex: L ( x ) = 1 x , L ( 1 ) = 0 , L ( x ) = 1 x d t t L'(x)=\frac{1}{x},L(1)=0,L(x)=\int_1^x\frac{dt}{t}

Ex:
新函数: y = e x 2 , y ( 0 ) = 0 , F ( x ) = 0 x e t 2 d t y'=e^{-x^2},y(0)=0,F(x)=\int_0^xe^{-t^2}dt
如图所示:时钟函数。 y = e x 2 y=e^{-x^2}
在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/qq_38386316/article/details/88626496