吴恩达深度学习2-Week1课后作业1-参数的初始化

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Apple_hzc/article/details/83104347

一、deeplearning-assignment

从前面的编程作业中,我们可以看到,训练一个神经网络需要一些合适的初始化参数,一个好的初始化方法能够帮助训练自己的神经网络。如果完成了前一个课程的所有联系,你可能按照指导进行了权重初始化,并且到目前为止它已经成功了。但是,面对一个新的神经网络究竟应该怎么选择初始化?在这个笔记中,你会看到不同的初始化会带来不同的结果。

精心选择的初始化可以:

  • 加快梯度下降的收敛
  • 增加梯度下降收敛到较低的训练(和泛化)错误的几率

在本节的练习中,你需要一个分类器去区分蓝点和红点。

该分类器是一个三层的神经网络,代码如下,分别通过三种不同的初始化参数的方法进行训练,并比较结果的差异,分析总结得出结论。


二、相关算法代码

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation
from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec

plt.rcParams['figure.figsize'] = (7.0, 4.0)  # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

train_X, train_Y, test_X, test_Y = load_dataset()


# 初始化方法一
def initialize_parameters_zeros(layers_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the size of each layer.

    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])
                    b1 -- bias vector of shape (layers_dims[1], 1)
                    ...
                    WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])
                    bL -- bias vector of shape (layers_dims[L], 1)
    """

    parameters = {}
    L = len(layers_dims)  # number of layers in the network

    for l in range(1, L):
        parameters['W' + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1]))
        parameters['b' + str(l)] = 0
    return parameters


# 初始化方法二
def initialize_parameters_random(layers_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the size of each layer.

    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])
                    b1 -- bias vector of shape (layers_dims[1], 1)
                    ...
                    WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])
                    bL -- bias vector of shape (layers_dims[L], 1)
    """

    np.random.seed(3)  # This seed makes sure your "random" numbers will be the as ours
    parameters = {}
    L = len(layers_dims)  # integer representing the number of layers

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))
    return parameters


# 初始化方法三
def initialize_parameters_he(layers_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the size of each layer.

    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])
                    b1 -- bias vector of shape (layers_dims[1], 1)
                    ...
                    WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])
                    bL -- bias vector of shape (layers_dims[L], 1)
    """

    np.random.seed(3)
    parameters = {}
    L = len(layers_dims) - 1  # integer representing the number of layers

    for l in range(1, L + 1):
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1])
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))
    return parameters


# 三层神经网络
def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he"):
    """
    Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID.

    Arguments:
    X -- input data, of shape (2, number of examples)
    Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples)
    learning_rate -- learning rate for gradient descent
    num_iterations -- number of iterations to run gradient descent
    print_cost -- if True, print the cost every 1000 iterations
    initialization -- flag to choose which initialization to use ("zeros","random" or "he")

    Returns:
    parameters -- parameters learnt by the model
    """

    grads = {}
    costs = []  # to keep track of the loss
    m = X.shape[1]  # number of examples
    layers_dims = [X.shape[0], 10, 5, 1]

    # Initialize parameters dictionary.
    if initialization == "zeros":
        parameters = initialize_parameters_zeros(layers_dims)
    elif initialization == "random":
        parameters = initialize_parameters_random(layers_dims)
    elif initialization == "he":
        parameters = initialize_parameters_he(layers_dims)

    # Loop (gradient descent)

    for i in range(0, num_iterations):

        # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID.
        a3, cache = forward_propagation(X, parameters)

        # Loss
        cost = compute_loss(a3, Y)

        # Backward propagation.
        grads = backward_propagation(X, Y, cache)

        # Update parameters.
        parameters = update_parameters(parameters, grads, learning_rate)

        # Print the loss every 1000 iterations
        if print_cost and i % 1000 == 0:
            print("Cost after iteration {}: {}".format(i, cost))
            costs.append(cost)

    # plot the loss
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (per hundreds)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()

    return parameters


# parameters = initialize_parameters_zeros([3, 2, 1])
# print("W1 = " + str(parameters["W1"]))
# print("b1 = " + str(parameters["b1"]))
# print("W2 = " + str(parameters["W2"]))
# print("b2 = " + str(parameters["b2"]))

# parameters = model(train_X, train_Y, initialization="zeros")
# print("On the train set:")
# predictions_train = predict(train_X, train_Y, parameters)
# print("On the test set:")
# predictions_test = predict(test_X, test_Y, parameters)

# plt.title("Model with Zeros initialization")
# axes = plt.gca()
# axes.set_xlim([-1.5, 1.5])
# axes.set_ylim([-1.5, 1.5])
# plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

parameters = initialize_parameters_random([3, 2, 1])
# print("W1 = " + str(parameters["W1"]))
# print("b1 = " + str(parameters["b1"]))
# print("W2 = " + str(parameters["W2"]))
# print("b2 = " + str(parameters["b2"]))

# parameters = model(train_X, train_Y, initialization="random")
# print("On the train set:")
# predictions_train = predict(train_X, train_Y, parameters)
# print("On the test set:")
# predictions_test = predict(test_X, test_Y, parameters)
#
# plt.title("Model with large random initialization")
# axes = plt.gca()
# axes.set_xlim([-1.5, 1.5])
# axes.set_ylim([-1.5, 1.5])
# plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

parameters = initialize_parameters_he([2, 4, 1])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

parameters = model(train_X, train_Y, initialization="he")
# print("On the train set:")
# predictions_train = predict(train_X, train_Y, parameters)
# print("On the test set:")
# predictions_test = predict(test_X, test_Y, parameters)

plt.title("Model with He initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

三、总结

1.initialize_parameters_zeros

从上图可以看出,通过该方法初始化参数使得神经网络的性能非常糟糕,成本并没有真正降低,算法也没有比随机猜测更好。为什么?让我们看看预测和决策边界的细节:

扫描二维码关注公众号,回复: 3729755 查看本文章

事实上,将所有的Weights初始化为零并没能打破网络节点的对称,不管学习多久,隐藏单元都是对称的,仍然会计算出完全一样的函数,相当于隐藏层的存在没有任何意义。

因此,要注意以下两点:

  1. 所有的Weights值需要初始化为随机值,而不是全零,打破对称才能更好地训练网络。
  2. 将所有的b初始化为零是可以允许的。

2.initialize_parameters_random

可以看出,通过将W随机初始化,打破了节点间的对称,使得cost下降,得到了比之前更好的效果。但是cost的起点非常高,这是因为有一些随机初始值比较高,通过sigmoid函数处理后得到的起点值也比较高。糟糕的初始化可能会导致急剧下降/爆炸的梯度,也减缓了优化算法。如果你训练该网络更长时间你会看到更好的结果,但初始化过往往减缓了优化。

因此,我们知道:

  1. 虽然相比零初始化效果好,但往往初始化的值过大,对于整个网络的效率往往会降低。
  2. 我们希望通过一个合适的小的初始化来让网络的训练和学习效果更好。

3.initialize_parameters_he

我们可以看出,通过"He initialization"模型在较少的迭代中很好地分离了蓝色和红色的点。

总结:

  • 不同的初始化能够导致不同的结果。
  • 随机初始化用于破坏对称性,并确保不同的隐藏单元可以学习不同的东西。
  • 不要初始化太大的值。
  • "He initialization"适用于ReLU激活的网络。

猜你喜欢

转载自blog.csdn.net/Apple_hzc/article/details/83104347