4.Deep Residual Network

Refer to the structure and details of the network :

PyTorch 中级篇(2):深度残差网络(Deep Residual Networks) | SHEN's BLOG

 The complete code:

# ---------------------------------------------------------------------------- #
# An implementation of https://arxiv.org/pdf/1512.03385.pdf                    #
# See section 4.2 for the model architecture on CIFAR-10                       #
# Some part of the code was referenced from below                              #
# https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py   #
# ---------------------------------------------------------------------------- #

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Hyper-parameters
num_epochs = 80
batch_size = 100
learning_rate = 0.001

# Image preprocessing modules
transform = transforms.Compose([
    transforms.Pad(4),
    transforms.RandomHorizontalFlip(),
    transforms.RandomCrop(32),
    transforms.ToTensor()])



# CIFAR-10 dataset
train_dataset = torchvision.datasets.CIFAR10(root='../../data/', train=True, transform=transform, download=True)
test_dataset = torchvision.datasets.CIFAR10(root='../../data/', train=False, transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)


# 3x3 convolution
def conv3x3(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)


# Residual block
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out


# ResNet:muti residual block ---> ResNet
class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=10):
        super(ResNet, self).__init__()
        self.in_channels = 16
        self.conv = conv3x3(3, 16)
        self.bn = nn.BatchNorm2d(16)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self.make_layer(block, 16, layers[0])
        self.layer2 = self.make_layer(block, 32, layers[1], 2)
        self.layer3 = self.make_layer(block, 64, layers[2], 2)
        self.avg_pool = nn.AvgPool2d(8, ceil_mode=False) # nn.AvgPool2d需要添加参数ceil_mode=False,否则该模块无法导出为onnx格式
        self.fc = nn.Linear(64, num_classes)

    def make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if (stride != 1) or (self.in_channels != out_channels):
            downsample = nn.Sequential(conv3x3(self.in_channels, out_channels, stride=stride), nn.BatchNorm2d(out_channels))
        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample)) # 残差直接映射部分
        self.in_channels = out_channels
        for i in range(1, blocks):
            layers.append(block(out_channels, out_channels))
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv(x)
        out = self.bn(out)
        out = self.relu(out)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out


# 实例化一个残差网络模型
model = ResNet(ResidualBlock, [2, 2, 2]).to(device)
print(model)


# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)


# For updating learning rate
def update_lr(optimizer, lr):
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


# Train the model
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)

        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)

        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i + 1) % 100 == 0:
            print("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}".format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))

    # Decay learning rate: 学习率衰减策略
    if (epoch + 1) % 20 == 0:
        curr_lr /= 3
        update_lr(optimizer, curr_lr)

# Test the model
model.eval()            # 设置为评估模式
with torch.no_grad():   # eval过程屏蔽梯度计算
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

# Save the model checkpoint
torch.save(model.state_dict(), 'resnet.ckpt')


# Pytorch 模型可视化
# 导出 ONNX 模型

import torch.onnx

# 按照输入格式,设计随机输入
dummy_input =torch.randn(1, 3, 32, 32).cuda()
# 导出模型
torch.onnx.export(model, dummy_input, 'resnet.onnx', verbose=True, training=2)


# 模型可视化工具:NETRON
import netron
#打开服务
netron.start('resnet.onnx')



猜你喜欢

转载自blog.csdn.net/weixin_43135178/article/details/124612884