2020年春季学习信号与系统课程作业参考答案-第十一次作业

信号与系统第十一次作业参考答案
 

※ 第一题


利用三种逆变方法求下列 X ( z ) X\left( z \right) 的逆变换 x [ n ] x\left[ n \right]
X ( z ) = 10 z ( z 1 ) ( z 2 ) ,      ( z > 2 ) X\left( z \right) = {{10z} \over {\left( {z - 1} \right)\left( {z - 2} \right)}},\,\,\,\,\left( {\left| z \right| > 2} \right)


■ 求解:

方法1:围线积分方法:
因为 z > 2 \left| z \right| > 2 ,所以信号为右边序列。
x [ n ] = 1 2 π j C X ( z ) z n 1 d z = 1 2 π j C 10 z n ( z 1 ) ( z 2 ) d z x\left[ n \right] = {1 \over {2\pi j}}\oint\limits_C {X\left( z \right) \cdot z^{n - 1} dz = {1 \over {2\pi j}}\oint\limits_C {{{10z^n } \over {\left( {z - 1} \right)\left( {z - 2} \right)}}dz} }

x [ n ] = m R e s [ 10 z n ( z 1 ) ( z 2 ) ] z = z m x\left[ n \right] = \sum\limits_m^{} {{\mathop{\rm Re}\nolimits} s\left[ {{{10z^n } \over {\left( {z - 1} \right)\left( {z - 2} \right)}}} \right]} _{z = z_m }

R e s [ 10 z n ( z 1 ) ( z 2 ) ] z = 1 = 10 {\mathop{\rm Re}\nolimits} s\left[ {{{10z^n } \over {\left( {z - 1} \right)\left( {z - 2} \right)}}} \right]_{z = 1} = - 10 R e s [ 10 z n ( z 1 ) ( z 2 ) ] z = 2 = 10 2 n {\mathop{\rm Re}\nolimits} s\left[ {{{10z^n } \over {\left( {z - 1} \right)\left( {z - 2} \right)}}} \right]_{z = 2} = 10 \cdot 2^n

x [ n ] = [ 10 + 10 2 n ] u [ n ] x\left[ n \right] = \left[ { - 10 + 10 \cdot 2^n } \right] \cdot u\left[ n \right]

方法2:长除法:

x [ n ] = 10 z 1 + 30 z 2 + 70 z 3 + x\left[ n \right] = 10z^{ - 1} + 30z^{ - 2} + 70z^{ - 3} + \cdots = 10 ( 2 n 1 ) u [ n ] = 10\left( {2^n - 1} \right) \cdot u\left[ n \right]

>> deconv([10,0,0,0,0,0,0,0,0],[1,-3,2])'
ans=10 30 70 150 310 630 1270

方法3:部分因式分解法:
X ( z ) z = 10 ( z 1 ) ( z 2 ) = 10 z 1 + 10 z 2 {{X\left( z \right)} \over z} = {{10} \over {\left( {z - 1} \right)\left( {z - 2} \right)}} = {{ - 10} \over {z - 1}} + {{10} \over {z - 2}} X ( z ) = 10 z z 1 + 10 z z 2 X\left( z \right) = {{ - 10z} \over {z - 1}} + {{10z} \over {z - 2}}

x [ n ] = 10 u [ n ] + 10 2 n u [ n ] x\left[ n \right] = - 10 \cdot u\left[ n \right] + 10 \cdot 2^n u\left[ n \right]

使用MATLAB对应的变换命令:

>>iztrans(10*z/(z-1)/(z-2))
ans=10*2^n-10

※ 第二题


求下列 X ( z ) X\left( z \right) 的逆变换 x [ n ] x\left[ n \right]

(1) X ( z ) = 10 ( 1 0.5 z 1 ) ( 1 0.25 z 1 )          ( z > 0.5 )            X\left( z \right) = {{10} \over {\left( {1 - 0.5z^{ - 1} } \right)\left( {1 - 0.25z^{ - 1} } \right)}}\,\,\,\,\,\,\,\,\left( {\left| z \right| > 0.5} \right)\;\;\;\;\;

(2) X ( z ) = 10 z 2 ( z 1 ) ( z + 1 )            ( z > 1 )            X\left( z \right) = {{10z^2 } \over {\left( {z - 1} \right)\left( {z + 1} \right)}}\,\,\,\,\,\,\,\,\,\,\left( {\left| z \right| > 1} \right)\;\;\;\;\;
(3) X ( z ) = 1 + z 1 1 2 z 1 cos ω + z 2                ( z > 1 )            X\left( z \right) = {{1 + z^{ - 1} } \over {1 - 2z^{ - 1} \cos \omega + z^{ - 2} }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\left| z \right| > 1} \right)\;\;\;\;\;


■ 求解:

(1)求解:
X ( z ) z = 10 z ( z 0.5 ) ( z 0.25 ) = 20 z 0.5 + 10 z 0.25 {{X\left( z \right)} \over z} = {{10z} \over {\left( {z - 0.5} \right)\left( {z - 0.25} \right)}} = {{20} \over {z - 0.5}} + {{ - 10} \over {z - 0.25}} X ( z ) = 20 z z 0.5 + 10 z z 0.25 X\left( z \right) = {{20z} \over {z - 0.5}} + {{ - 10z} \over {z - 0.25}} z > 0.5 \left| z \right| > 0.5 x [ n ] = [ 20 ( 0.5 ) n 10 ( 0.25 ) n ] u [ n ] x\left[ n \right] = \left[ {20 \cdot \left( {0.5} \right)^n - 10 \cdot \left( {0.25} \right)^n } \right] \cdot u\left[ n \right]

>>iztrans(10/(1-0.5/z)/(1-0.25/z))'
ans=20*(1/2)^n-10*(1/4)^n

(2)求解:
X ( z ) z = 10 z ( z 1 ) ( z + 1 ) = 5 z 1 + 5 z + 1 {{X\left( z \right)} \over z} = {{10z} \over {\left( {z - 1} \right)\left( {z + 1} \right)}} = {5 \over {z - 1}} + {5 \over {z + 1}} X ( z ) = 5 z z 1 + 5 z z + 1 X\left( z \right) = {{5z} \over {z - 1}} + {{5z} \over {z + 1}} z > 1 \left| z \right| > 1 x [ n ] = 5 [ 1 + ( 1 ) n ] u [ n ] x\left[ n \right] = 5 \cdot \left[ {1 + \left( { - 1} \right)^n } \right] \cdot u\left[ n \right]

>>iztrans(10*z*z/(z-1)/(z+1))'
ans=5*(-1)^n+5

(3)求解: 根据正弦、余弦单边序列的z变换:
Z [ cos ( ω 0 n ) u [ n ] ] = z ( z cos ω 0 ) z 2 2 z cos ω 0 + 1 Z\left[ {\cos \left( {\omega _0 n} \right)u\left[ n \right]} \right] = {{z\left( {z - \cos \omega _0 } \right)} \over {z^2 - 2z\cos \omega _0 + 1}} Z [ sin ( ω 0 n ) u [ n ] ] = z sin ω 0 z 2 2 z cos ω 0 + 1 Z\left[ {\sin \left( {\omega _0 n} \right)u\left[ n \right]} \right] = {{z\sin \omega _0 } \over {z^2 - 2z\cos \omega _0 + 1}}

X ( z ) = z 2 + z z 2 2 z cos ω + 1 X\left( z \right) = {{z^2 + z} \over {z^2 - 2z\cos \omega + 1}} = z ( z cos ω ) z 2 2 z cos ω + 1 + 1 + cos ω sin ω z sin ω z 2 2 z cos ω + 1 = {{z\left( {z - \cos \omega } \right)} \over {z^2 - 2z\cos \omega + 1}} + {{1 + \cos \omega } \over {\sin \omega }}{{z\sin \omega } \over {z^2 - 2z\cos \omega + 1}}
x [ n ] = ( cos ω n + 1 + cos ω sin ω sin ω n ) u [ n ] x\left[ n \right] = \left( {\cos \omega n + {{1 + \cos \omega } \over {\sin \omega }}\sin \omega n} \right) \cdot u\left[ n \right] = sin ( n ω ) + sin ( n + 1 ) ω sin ω u [ n ] = {{\sin \left( {n\omega } \right) + \sin \left( {n + 1} \right)\omega } \over {\sin \omega }} \cdot u\left[ n \right]

>>iztrans((1+1/z)/(1-2*z^-1*cos(w)+z^-2))'
ans=(sin(n*w)*(cos(w)+1))/sin(w)-(cos(n*w)*(cos(w)+1))/cos(w)+(cos(n*w)*(2*cos(w)+1))/cos(w)
>>iztrans((z*z+z)/(z*z-2*z*cos(w)+1))'
ans=(sin(n*w)*(cos(w)+1))/sin(w)-(cos(n*w)*(cos(w)+1))/cos(w)+(cos(n*w)*(2*cos(w)+1))/cos(w)

sin n ω ( cos ω + 1 ) sin ω cos n ω ( cos ω + 1 ) cos ω + cos n ω ( 2 cos + 1 ) cos ω {{\sin n\omega \left( {\cos \omega + 1} \right)} \over {\sin \omega }} - {{\cos n\omega \left( {\cos \omega + 1} \right)} \over {\cos \omega }} + {{\cos n\omega \left( {2\cos + 1} \right)} \over {\cos \omega }}
( sin n ω cos ω sin ω cos n ω ) ( cos ω + 1 ) + sin ω cos n ω ( 2 cos ω + 1 ) sin ω cos ω {{\left( {\sin n\omega \cdot \cos \omega - \sin \omega \cdot \cos n\omega } \right) \cdot \left( {\cos \omega + 1} \right) + \sin \omega \cdot \cos n\omega \cdot (2\cos \omega + 1)} \over {\sin \omega \cdot \cos \omega }}

※ 第三题


求下面两个函数的拉普拉斯变换:


■ 求解:

(a)求解:
f 1 ( t ) = ( 1 t ) [ u ( t ) u ( t 1 ) ] f_1 \left( t \right) = \left( {1 - t} \right)\left[ {u\left( t \right) - u\left( {t - 1} \right)} \right] F 1 ( s ) = 0 1 ( 1 t ) e s t d t = e s + s 1 s 2 F_1 \left( s \right) = \int_0^1 {\left( {1 - t} \right) \cdot e^{ - st} dt} = {{e^{ - s} + s - 1} \over {s^2 }} F ( s ) = F 1 ( s ) 1 e s = e s + s 1 ( 1 e s ) s 2 = 1 s 2 + 1 s ( 1 e s ) F\left( s \right) = {{F_1 \left( s \right)} \over {1 - e^{ - s} }} = {{e^{ - s} + s - 1} \over {\left( {1 - e^{ - s} } \right) \cdot s^2 }} = - {1 \over {s^2 }} + {1 \over {s\left( {1 - e^{ - s} } \right)}}

(b)求解:
f 1 ( t ) = δ ( t ) δ ( t 1 2 ) f_1 \left( t \right) = \delta \left( t \right) - \delta \left( {t - {1 \over 2}} \right) F 1 ( s ) = 0 1 f 1 ( t ) e s t d t = 1 e 1 2 s F_1 \left( s \right) = \int_0^1 {f_1 \left( t \right)e^{ - st} dt} = 1 - e^{ - {1 \over 2}s} F ( s ) = F 1 ( s ) 1 e s = 1 e 1 2 s 1 e s = 1 1 + e s 2 F\left( s \right) = {{F_1 \left( s \right)} \over {1 - e^{ - s} }} = {{1 - e^{ - {1 \over 2}s} } \over {1 - e^{ - s} }} = {1 \over {1 + e^{ - {s \over 2}} }}

>>laplace((1-t)*(heaviside(t)-heaviside(t-1)))'
ans=(exp(-s)*(s*exp(s)-exp(s)+1))/s^2

※ 第四题


已知下列 X ( s ) X\left( s \right) ,求各自的拉普拉斯反变换的初值和终值:
(1) s + 3 ( s + 4 ) ( s + 5 ) {{s + 3} \over {\left( {s + 4} \right)\left( {s + 5} \right)}}
(2) 2 s 2 + 2 s + 3 ( s + 1 ) ( s 2 + 4 ) {{2s^2 + 2s + 3} \over {\left( {s + 1} \right)\left( {s^2 + 4} \right)}}
(3) s + 4 ( s + 1 ) 2 ( s + 2 ) {{s + 4} \over {\left( {s + 1} \right)^2 \left( {s + 2} \right)}}
(4) e s s 2 ( s 2 ) 4 {{e^{ - s} } \over {s^2 \left( {s - 2} \right)^4 }}


■ 求解:

(1)求解: x ( 0 + ) = 1 ,     x ( ) = 0 x\left( {0_ + } \right) = 1,\,\,\,x\left( \infty \right) = 0

>>ilaplace((s+3)/(s+4)/(s+5))'
ans=2*exp(-5*t)-exp(-4*t)

(2)求解: x ( 0 + ) = 0 ,     x ( ) = 0 x\left( {0_ + } \right) = 0,\,\,\,x\left( \infty \right) = 0

>>ilaplace((s+4)/((s+1)^2*(s+2)))'
ans= 2*exp(-2*t)-2*exp(-t)+3*t*exp(-t)

(3)求解: x ( 0 + ) = 2 ,      x ( ) = x\left( {0_ + } \right) = 2,\,\,\,\,x\left( \infty \right) = 不存在

>>ilaplace((2*s*s+2*s+3)/((s+1)*(s*s+4)))'
ans=(7*cos(2*t))/5 +(3*exp(-t))/5 +(3*sin(2*t))/10

(4)求解: x ( 0 + ) = 0 ,      x ( ) = x\left( {0_ + } \right) = 0,\,\,\,\,x\left( \infty \right) = 不存在

>>ilaplace(exp(-s)/((s*s*(s-2).^4)))'
ans=heaviside(t-1)*(t/16 -exp(2*t-2)/8 -(exp(2*t-2)*(t-1)^2)/8 +(exp(2*t-2)*(t-1)^3)/24 +(3*exp(2*t-2)*(t-1))/16 +1/16)

※ 第五题


求下列函数的拉普拉斯变换:
(1) ( 1 e a t ) u ( t ) \left( {1 - e^{ - at} } \right) \cdot u\left( t \right)
(2) ( sin t + 2 cos t ) u ( t ) \left( {\sin t + 2\cos t} \right) \cdot u\left( t \right)
(3) t e 2 t u ( t ) t \cdot e^{ - 2t} \cdot u\left( t \right)
(4) e t u ( t 2 ) e^{ - t} u\left( {t - 2} \right)


■ 求解:

这里给出了完整版本的答案:

(1)解答: L [ 1 e a t ] = L [ 1 ] L [ e a t ] = 1 s 1 s + a L\left[ {1 - e^{ - at} } \right] = L\left[ 1 \right] - L\left[ {e^{ - at} } \right] = {1 \over s} - {1 \over {s + a}}

>>laplace(1-exp(-a*t))'
ans=1/s-1/(a+s)

(2) 解答: L [ sin t + 2 cos t ] = 2 s s 2 + 1 + 1 s 2 + 1 = 2 s + 1 s 2 + 1 L\left[ {\sin t + 2\cos t} \right] = {{2s} \over {s^2 + 1}} + {1 \over {s^2 + 1}} = {{2s + 1} \over {s^2 + 1}}

>>laplace(sin(t)+2*cos(t))'
ans=(2*s)/(s^2 +1)+1/(s^2 +1)

(3)解答: L [ t e 2 t ] = d d s L [ e 2 t ] = d d s ( 1 s + 2 ) = 1 ( s + 2 ) 2 L\left[ {t \cdot e^{ - 2t} } \right] = - {d \over {ds}}L\left[ {e^{ - 2t} } \right] = - {d \over {ds}}\left( {{1 \over {s + 2}}} \right) = {1 \over {\left( {s + 2} \right)^2 }}

>>laplace(t*exp(-2*t))'
ans=1/(s+2)^2

(4)解答:
L [ e t u ( t 2 ) ] = e 2 L [ e ( t 2 ) u ( t 2 ) ] = e 2 e 2 s 1 s + 1 L\left[ {e^{ - t} \cdot u\left( {t - 2} \right)} \right] = e^{ - 2} L\left[ {e^{ - \left( {t - 2} \right)} \cdot u\left( {t - 2} \right)} \right] = e^{ - 2} \cdot e^{ - 2s} \cdot {1 \over {s + 1}}

>>laplace(exp(-t)*heaviside(t-2))'
ans=(exp(-2*s)*exp(-2))/(s+1)

(5)解答: L [ e t sin ( 2 t ) ] = L [ sin ( 2 t ) ] s s + 1 = 2 ( s 2 + 4 ) s s + 1 = 2 ( s + 1 ) 2 + 4 L\left[ {e^{ - t} \cdot \sin \left( {2t} \right)} \right] = \left. {L\left[ {\sin \left( {2t} \right)} \right]} \right|_{s \to s + 1} = \left. {{2 \over {\left( {s^2 + 4} \right)}}} \right|_{s \to s + 1} = {2 \over {\left( {s + 1} \right)^2 + 4}}

>>laplace(exp(-t)*sin(2*t))'
ans=2/((s+1)^2 +4)

(6)解答: L [ ( 1 + 2 t ) e t ] = L [ 1 + 2 t ] s s + 1 = ( 1 s + 2 s 2 ) s s + 1 = 1 s + 1 + 2 ( s + 1 ) 2 L\left[ {\left( {1 + 2t} \right) \cdot e^{ - t} } \right] = \left. {L\left[ {1 + 2t} \right]} \right|_{s \to s + 1} = \left. {\left( {{1 \over s} + {2 \over {s^2 }}} \right)} \right|_{s \to s + 1} = {1 \over {s + 1}} + {2 \over {\left( {s + 1} \right)^2 }}

>>laplace((1+2*t)*exp(-t))'
ans=(2*(s/2 +3/2))/(s+1)^2

(7)解答: L [ cos ( a t ) ] = s s 2 + a 2 L\left[ {\cos \left( {at} \right)} \right] = {s \over {s^2 + a^2 }}
L { [ 1 cos ( a t ) ] e b t } = L [ 1 cos ( a t ) ] s s + b = 1 s + b s + b ( s + b ) 2 + a 2 L\left\{ {\left[ {1 - \cos \left( {at} \right)} \right] \cdot e^{ - bt} } \right\} = \left. {L\left[ {1 - \cos \left( {at} \right)} \right]} \right|_{s \to s + b} = {1 \over {s + b}} - {{s + b} \over {\left( {s + b} \right)^2 + a^2 }}

>>laplace(cos(a*t))'
ans=s/(a^2 +s^2)
>>laplace((1-cos(a*t))*exp(-b*t))'
ans=1/(b+s)-(b+s)/((b+s)^2 +a^2)

(8)解答: L [ t 2 + 2 t ] = 2 s 2 + 2 s 3 L\left[ {t^2 + 2t} \right] = {2 \over {s^2 }} + {2 \over {s^3 }}

>>laplace(t*t+2*t)'
ans=2/s^2 +2/s^3

(9)解答: L [ 2 δ ( t ) 3 e 7 t ] = 2 3 s + 7 L\left[ {2\delta \left( t \right) - 3e^{ - 7t} } \right] = 2 - {3 \over {s + 7}}

>>laplace(2*dirac(t)-3*exp(-7*t))'
ans=2 -3/(s+7)

(10)解答: L [ e a t sin ( b t ) ] = b ( s + a ) 2 + b 2 L\left[ {e^{ - at} \cdot \sin \left( {bt} \right)} \right] = {b \over {\left( {s + a} \right)^2 + b^2 }}

>>laplace(exp(-a*t)*sin(b*t))'
ans=b/((a+s)^2 +b^2)

(11)解答: cos 2 ( Ω t ) = 1 2 [ 1 + cos ( 2 Ω t ) ] \cos ^2 \left( {\Omega t} \right) = {1 \over 2}\left[ {1 + \cos \left( {2\Omega t} \right)} \right]

L [ cos 2 ( Ω t ) ] = L [ 1 2 ( 1 + cos ( 2 Ω t ) ) ] = s 2 + 2 Ω 2 s ( s 2 + 4 Ω 2 ) L\left[ {\cos ^2 \left( {\Omega t} \right)} \right] = L\left[ {{1 \over 2}\left( {1 + \cos \left( {2\Omega t} \right)} \right)} \right] = {{s^2 + 2\Omega ^2 } \over {s\left( {s^2 + 4\Omega ^2 } \right)}}

>>laplace(cos(w*t).^2)'
ans=(s^2 +2*w^2)/(s*(s^2 +4*w^2))

(12)解答: L [ e ( t + a ) cos ( ω t ) ] = e a { L [ e t cos ( ω t ) ] } = e a L [ cos ( ω t ) ] s s + 1 = e a ( s + 1 ) ( s + 1 ) 2 + ω 2 L\left[ {e^{ - \left( {t + a} \right)} \cdot \cos \left( {\omega t} \right)} \right] = e^{ - a} \left\{ {L\left[ {e^{ - t} \cdot \cos \left( {\omega t} \right)} \right]} \right\} = e^{ - a} \cdot \left. {L\left[ {\cos \left( {\omega t} \right)} \right]} \right|_{s \to s + 1} = {{e^{ - a} \cdot \left( {s + 1} \right)} \over {\left( {s + 1} \right)^2 + \omega ^2 }}

>>laplace(exp(-(t+a))*cos(w*t))'
ans=(s+1)/(exp(a)*s^2 +2*exp(a)*s+exp(a)*w^2 +exp(a))

(13)解答: L [ 1 b a ( e a t e b t ) ] = 1 s + a 1 s b b a = a + b a b s 2 + ( a b ) s a b L\left[ {{1 \over {b - a}}\left( {e^{ - at} - e^{bt} } \right)} \right] = {{{1 \over {s + a}} - {1 \over {s - b}}} \over {b - a}} = {{{{a + b} \over {a - b}}} \over {s^2 + \left( {a - b} \right)s - ab}}

>>laplace((exp(-a*t)-exp(b*t))/(b-a))'
ans=-(1/(a+s)+1/(b-s))/(a-b)

(14)解答: L [ 1 b a ( e a t e b t ) ] = 1 s + a 1 s + b b a = 1 ( s + a ) ( s + b ) L\left[ {{1 \over {b - a}}\left( {e^{ - at} - e^{ - bt} } \right)} \right] = {{{1 \over {s + a}} - {1 \over {s + b}}} \over {b - a}} = {1 \over {\left( {s + a} \right)\left( {s + b} \right)}}

>>laplace((exp(-a*t)-exp(-b*t))/(b-a))'
ans=-(1/(a+s)-1/(b+s))/(a-b)

※ 第六题


已知因果序列 x [ n ] x\left[ n \right] 的z变换 X ( z ) X\left( z \right) ,求序列的初值 x [ n ] x\left[ n \right] 与终值 x [ ] x\left[ \infty \right]

(1) X ( z ) = 1 + z 1 + z 2 ( 1 z 1 ) ( 1 2 z 1 ) X\left( z \right) = {{1 + z^{ - 1} + z^{ - 2} } \over {\left( {1 - z^{ - 1} } \right) \cdot \left( {1 - 2z^{ - 1} } \right)}}
(2) X ( z ) = 1 ( 1 0.5 z 1 ) ( 1 + 0.5 z 1 ) X\left( z \right) = {1 \over {\left( {1 - 0.5z^{ - 1} } \right)\left( {1 + 0.5z^{ - 1} } \right)}}
(3) X ( z ) = z 1 1 1.5 z 1 + 0.5 z 2 X\left( z \right) = {{z^{ - 1} } \over {1 - 1.5z^{ - 1} + 0.5z^{ - 2} }}
(4) X ( z ) = z 4 ( z 1 ) ( z 0.5 ) ( z 0.2 ) X\left( z \right) = {{z^4 } \over {\left( {z - 1} \right)\left( {z - 0.5} \right)\left( {z - 0.2} \right)}}


■ 求解:

(1)解答:
X ( z ) = 1 + z 1 + z 2 ( 1 z 1 ) ( 1 2 z 1 ) X\left( z \right) = {{1 + z^{ - 1} + z^{ - 2} } \over {\left( {1 - z^{ - 1} } \right) \cdot \left( {1 - 2z^{ - 1} } \right)}}

x [ 0 ] = X ( ) = 1 x\left[ 0 \right] = X\left( \infty \right) = 1
由于存在极点位于2,处于单位圆外,所以 x [ ] x\left[ \infty \right] 不存在。

>>iztrans((1+1/z+1/z/z)/((1-1/z)*(1-2/z)))'
ans=(7*2^n)/2 +kroneckerDelta(n,0)/2 -3

(2)解答:
X ( z ) = 1 ( 1 0.5 z 1 ) ( 1 + 0.5 z 1 ) X\left( z \right) = {1 \over {\left( {1 - 0.5z^{ - 1} } \right)\left( {1 + 0.5z^{ - 1} } \right)}}

x [ 0 ] = X ( ) = 1 x\left[ 0 \right] = X\left( \infty \right) = 1 x [ ] = lim z 1 z 1 ( 1 0.5 z 1 ) ( 1 + 0.5 z 1 ) = 0 x\left[ \infty \right] = \mathop {\lim }\limits_{z \to 1} {{z - 1} \over {\left( {1 - 0.5z^{ - 1} } \right)\left( {1 + 0.5z^{ - 1} } \right)}} = 0

>>iztrans(1/((1-0.5/z)*(1+0.5/z)))'
ans=(-1/2)^n/2 +(1/2)^n/2

(3)解答:
X ( z ) = z 1 1 1.5 z 1 + 0.5 z 2 X\left( z \right) = {{z^{ - 1} } \over {1 - 1.5z^{ - 1} + 0.5z^{ - 2} }}

x [ 0 ] = X ( ) = 0 x\left[ 0 \right] = X\left( \infty \right) = 0

x [ ] = lim z 1 z 1 ( z 1 ) 1 1.5 z 1 + 0.5 z 2 = lim z 1 z z 0.5 = 2 x\left[ \infty \right] = \mathop {\lim }\limits_{z \to 1} {{z^{ - 1} \left( {z - 1} \right)} \over {1 - 1.5z^{ - 1} + 0.5z^{ - 2} }} = \mathop {\lim }\limits_{z \to 1} {z \over {z - 0.5}} = 2

>>iztrans(1/z/(1-1.5/z+0.5/z/z))'
ans=2 -2*(1/2)^n

(4)解答:
X ( z ) = z 4 ( z 1 ) ( z 0.5 ) ( z 0.2 ) X\left( z \right) = {{z^4 } \over {\left( {z - 1} \right)\left( {z - 0.5} \right)\left( {z - 0.2} \right)}}

X ( z ) = z 4 z 3 1.7 z 2 + 0.8 z 0.1 = z + 1.7 z 3 0.8 z 2 + 0.1 z z 3 X\left( z \right) = {{z^4 } \over {z^3 - 1.7z^2 + 0.8z - 0.1}} = z + {{1.7z^3 - 0.8z^2 + 0.1z} \over {z^3 }}

x [ 0 ] = lim z 1.7 z 3 0.8 z 2 + 0.1 z z 3 = 1.7 x\left[ 0 \right] = \mathop {\lim }\limits_{z \to \infty } {{1.7z^3 - 0.8z^2 + 0.1z} \over {z^3 }} = 1.7

x [ ] = lim z 1 z 4 ( z 1 ) ( z 1 ) ( z 0.5 ) ( z 0.2 ) = 1 0.5 0.8 = 2.5 x\left[ \infty \right] = \mathop {\lim }\limits_{z \to 1} {{z^4 \left( {z - 1} \right)} \over {\left( {z - 1} \right)\left( {z - 0.5} \right)\left( {z - 0.2} \right)}} = {1 \over {0.5*0.8}} = 2.5

>>iztrans(z^4/((z-1)*(z-0.5)*(z-0.2)))'
ans=(1/5)^n/30 -(5*(1/2)^n)/6 +iztrans(z,z,n)+5/2

※ 第七题


利用z变换的性质求以下序列的z变换,表明收敛域:

(1) x 1 [ n ] = ( 2 ) n n u [ n ] x_1 \left[ n \right] = \left( { - 2} \right)^n n \cdot u\left[ n \right]

(2) x 2 [ n ] = ( n 1 ) u [ n ] x_2 \left[ n \right] = \left( {n - 1} \right)^{} \cdot u\left[ n \right]

(3) x 3 [ n ] = n a n 1 u [ n ] x_3 \left[ n \right] = na^{n - 1} \cdot u\left[ n \right]

(4) x 4 [ n ] = 2 n k = 0 ( 2 ) k u [ n k ] x_4 \left[ n \right] = 2^n \cdot \sum\limits_{k = 0}^\infty {\left( { - 2} \right)^k \cdot u\left[ {n - k} \right]}

(5) x 5 [ n ] = a n n + 2 u [ n + 1 ] x_5 \left[ n \right] = {{a^n } \over {n + 2}} \cdot u\left[ {n + 1} \right]

(6) x 6 [ n ] = ( 1 3 ) n . cos ( n π 2 ) u [ n ] x_6 \left[ n \right] = \left( {{1 \over 3}} \right)^n .\cos \left( {{{n\pi } \over 2}} \right) \cdot u\left[ n \right]


■ 求解:

(1)求解:
x 1 [ n ] = ( 2 ) n n u [ n ] x_1 \left[ n \right] = \left( { - 2} \right)^n n \cdot u\left[ n \right]

Z { ( 2 ) n } = z z + 2 Z\left\{ {\left( { - 2} \right)^n } \right\} = {z \over {z + 2}}

Z { x [ n ] n } = z d d z X ( z ) Z\left\{ {x\left[ n \right] \cdot n} \right\} = - z{d \over {dz}}X\left( z \right)

Z { ( 2 ) n n } = z d d z z z + 2 = 2 z ( z + 2 ) 2 Z\left\{ {\left( { - 2} \right)^n \cdot n} \right\} = - z{d \over {dz}}{z \over {z + 2}} = {{ - 2z} \over {\left( {z + 2} \right)^2 }}

>> ztrans((-2)^n*n)'
ans = -(2*z)/(z + 2)^2

(2)求解:
x 2 [ n ] = ( n 1 ) u [ n ] x_2 \left[ n \right] = \left( {n - 1} \right)^{} \cdot u\left[ n \right]

Z { n u [ n ] } = z d d z z z 1 = z ( z 1 ) 2 Z\left\{ {n \cdot u\left[ n \right]} \right\} = - z{d \over {dz}}{z \over {z - 1}} = {z \over {\left( {z - 1} \right)^2 }}

Z { n u [ n ] } = z d d z z z 1 = z ( z 1 ) 2 Z\left\{ {n \cdot u\left[ n \right]} \right\} = - z{d \over {dz}}{z \over {z - 1}} = {z \over {\left( {z - 1} \right)^2 }}

Z { ( n 1 ) u [ n ] } = z ( z 1 ) 2 z z 1 = z 2 + 2 z ( z 1 ) 2 Z\left\{ {\left( {n - 1} \right) \cdot u\left[ n \right]} \right\} = {z \over {\left( {z - 1} \right)^2 }} - {z \over {z - 1}} = {{ - z^2 + 2z} \over {\left( {z - 1} \right)^2 }}

>> ztrans((n-1))'
ans = z/(z - 1)^2 - z/(z - 1)

(3)求解:
x 3 [ n ] = n a n 1 u [ n ] x_3 \left[ n \right] = na^{n - 1} \cdot u\left[ n \right]

Z { a n u [ n ] } = z z a Z\left\{ {a^n \cdot u\left[ n \right]} \right\} = {z \over {z - a}}

Z { n a n u [ n ] } = z d d z z z a = a z ( z a ) 2 Z\left\{ {n \cdot a^n \cdot u\left[ n \right]} \right\} = - z{d \over {dz}}{z \over {z - a}} = {{az} \over {\left( {z - a} \right)^2 }}

Z { n a n 1 u [ n ] } = d d z z z a = z ( z a ) 2 Z\left\{ {n \cdot a^{n - 1} \cdot u\left[ n \right]} \right\} = {d \over {dz}}{z \over {z - a}} = {z \over {\left( {z - a} \right)^2 }}

>> ztrans(n*a^(n-1))'
ans = z/(a - z)^2

(4)求解:
x 4 [ n ] = 2 n k = 0 ( 2 ) k u [ n k ] x_4 \left[ n \right] = 2^n \cdot \sum\limits_{k = 0}^\infty {\left( { - 2} \right)^k \cdot u\left[ {n - k} \right]}

Z { ( 2 ) n u [ n ] } = z z + 2 Z\left\{ {\left( { - 2} \right)^n \cdot u\left[ n \right]} \right\} = {z \over {z + 2}}

Z { u [ n ] } = z z 1 Z\left\{ {u\left[ n \right]} \right\} = {z \over {z - 1}}

Z { ( 2 ) k u [ n ] u [ n ] } = z z + 2 z z 1 = z 2 ( z + 2 ) ( z 1 ) Z\left\{ {\left( { - 2} \right)^k u\left[ n \right] * u\left[ n \right]} \right\} = {z \over {z + 2}} \cdot {z \over {z - 1}} = {{z^2 } \over {\left( {z + 2} \right)\left( {z - 1} \right)}}

Z { 2 n ( 2 ) k u [ n ] u [ n ] } = ( z 2 ) 2 ( z 2 + 2 ) ( z 2 1 ) = z 2 ( z + 4 ) ( z 2 ) Z\left\{ {2^n \cdot \left( { - 2} \right)^k u\left[ n \right] * u\left[ n \right]} \right\} = {{\left( {{z \over 2}} \right)^2 } \over {\left( {{z \over 2} + 2} \right)\left( {{z \over 2} - 1} \right)}} = {{z^2 } \over {\left( {z + 4} \right)\left( {z - 2} \right)}}

(5)求解:
x 5 [ n ] = a n n + 2 u [ n + 1 ] x_5 \left[ n \right] = {{a^n } \over {n + 2}} \cdot u\left[ {n + 1} \right]

Z { 1 n + 1 u [ n ] } = z ln z z 1 Z\left\{ {{1 \over {n + 1}} \cdot u\left[ n \right]} \right\} = z \cdot \ln {z \over {z - 1}}

Z { 1 n + 2 u [ n + 1 ] } = z 2 ln z z 1 Z\left\{ {{1 \over {n + 2}} \cdot u\left[ {n + 1} \right]} \right\} = z^2 \ln {z \over {z - 1}}

Z { a n n + 2 u [ n + 1 ] } = ( z a ) 2 ln z a z a 1 = z 2 a 2 ln z z a Z\left\{ {{{a^n } \over {n + 2}} \cdot u\left[ {n + 1} \right]} \right\} = \left( {{z \over a}} \right)^2 \ln {{{z \over a}} \over {{z \over a} - 1}} = {{z^2 } \over {a^2 }}\ln {z \over {z - a}}

Z { a n n + 2 u [ n + 1 ] } = Z { a n n + 2 u [ n ] + a 1 δ [ 1 ] } = z 2 a 2 [ ln ( z a z ) + a z ] z a    = z 2 a 2 ln ( z a z ) = z 2 a 2 ln ( z z a ) Z\left\{ {{{a^n } \over {n + 2}} \cdot u\left[ {n + 1} \right]} \right\} = Z\left\{ {{{a^n } \over {n + 2}} \cdot u\left[ n \right] + a^{ - 1} \delta \left[ { - 1} \right]} \right\} = {{ - z^2 } \over {a^2 }}\left[ {\ln \left( {{{z - a} \over z}} \right) + {a \over z}} \right] - {z \over a}\,\, = {{ - z^2 } \over {a^2 }}\ln \left( {{{z - a} \over z}} \right) = {{z^2 } \over {a^2 }}\ln \left( {{z \over {z - a}}} \right)

(6)求解:
x 6 [ n ] = ( 1 3 ) n . cos ( n π 2 ) u [ n ] x_6 \left[ n \right] = \left( {{1 \over 3}} \right)^n .\cos \left( {{{n\pi } \over 2}} \right) \cdot u\left[ n \right]

Z { cos ( n ω ) } = z ( z cos ω ) z 2 2 cos ω z + 1 Z\left\{ {\cos \left( {n\omega } \right)} \right\} = {{z\left( {z - \cos \omega } \right)} \over {z^2 - 2\cos \omega \cdot z + 1}}

Z { cos ( n π 2 ) } = z 2 z 2 + 1 Z\left\{ {\cos \left( {{{n\pi } \over 2}} \right)} \right\} = {{z^2 } \over {z^2 + 1}}

Z { ( 1 3 ) n cos ( n π 2 ) } = ( 3 z ) 2 ( 3 z ) 2 + 1 = 9 z 2 9 z 2 + 1 Z\left\{ {\left( {{1 \over 3}} \right)^n \cos \left( {{{n\pi } \over 2}} \right)} \right\} = {{\left( {3z} \right)^2 } \over {\left( {3z} \right)^2 + 1}} = {{9z^2 } \over {9z^2 + 1}}

>>ztrans((1/3).^n*cos(n*pi/2))'
ans=(9*z^2)/(9*z^2 +1)

※ 第八题


利用z变换的性质求以下序列的卷积,已知:

(1) x [ n ] = a n 1 u [ n 1 ] ,    h [ n ] = u [ n ] x\left[ n \right] = a^{n - 1} \cdot u\left[ {n - 1} \right],\,\,h\left[ n \right] = u\left[ n \right]

(2) x [ n ] = 2 u [ n 1 ] ,     h [ n ] = k = 0 ( 1 ) k δ [ n k ] x\left[ n \right] = 2u\left[ {n - 1} \right],\,\,\,h\left[ n \right] = \sum\limits_{k = 0}^\infty {\left( { - 1} \right)^k \delta \left[ {n - k} \right]}


■ 求解:

(1)求解:
序列 x [ n ] , h [ n ] x\left[ n \right],h\left[ n \right] 的z变换分别是: X ( z ) = z z a z 1 = 1 z a ,      H ( z ) = z z 1 X\left( z \right) = {z \over {z - a}} \cdot z^{ - 1} = {1 \over {z - a}},\,\,\,\,H\left( z \right) = {z \over {z - 1}}

根据z变换的卷积定理, y [ n ] = x [ n ] h [ z ] y\left[ n \right] = x\left[ n \right] * h\left[ z \right] ,那么序列 y [ n ] y\left[ n \right] 的z变换为: Y ( z ) = H ( z ) X ( z ) = 1 z a z z 1 = 1 a 1 z z a + 1 1 a z z 1 Y\left( z \right) = H\left( z \right) \cdot X\left( z \right)\, = {1 \over {z - a}} \cdot {z \over {z - 1}} = {{{1 \over {a - 1}}z} \over {z - a}} + {{{1 \over {1 - a}}z} \over {z - 1}}
则: y [ n ] = 1 1 a u [ n ] 1 1 a a n u [ n ] y\left[ n \right] = {1 \over {1 - a}}u\left[ n \right] - {1 \over {1 - a}}a^n \cdot u\left[ n \right]

(2)求解:
序列 x [ n ] , h [ n ] x\left[ n \right],h\left[ n \right] 的z变换分别是: X ( z ) = 2 z 1 X\left( z \right) = {2 \over {z - 1}}

h [ n ] = k = 0 ( 1 ) k δ [ n k ] = ( 1 ) n u [ n ] h\left[ n \right] = \sum\limits_{k = 0}^\infty {\left( { - 1} \right)^k \delta \left[ {n - k} \right]} = \left( { - 1} \right)^n \cdot u\left[ n \right]

H ( z ) = z z + 1 H\left( z \right) = {z \over {z + 1}}

那么,根据z变换的卷积定理, y [ n ] = x [ n ] h [ n ] y\left[ n \right] = x\left[ n \right] * h\left[ n \right] 对应的z变换为:
Y ( z ) = X ( z ) H ( z ) = 2 z 1 z z + 1 = z z 1 + z z + 1 Y\left( z \right) = X\left( z \right) \cdot H\left( z \right) = {2 \over {z - 1}} \cdot {z \over {z + 1}} = {z \over {z - 1}} + {{ - z} \over {z + 1}}

则: y [ n ] = u [ n ] ( 1 ) n u [ n ] y\left[ n \right] = u\left[ n \right] - \left( { - 1} \right)^n \cdot u\left[ n \right]

※ 第九题


已知 X ( z ) X\left( z \right) H ( z ) H\left( z \right) 如下面所示,利用z域的卷积定理求 Z { x [ n ] h [ n ] } Z\left\{ {x\left[ n \right] \cdot h\left[ n \right]} \right\}

(1) X ( z ) = 1 1 1 2 z 1 ,    z > 0.5 ;      H ( z ) = 1 1 2 z ,    z < 0.5 X\left( z \right) = {1 \over {1 - {1 \over 2}z^{ - 1} }},\,\,\left| z \right| > 0.5;\,\,\,\,H\left( z \right) = {1 \over {1 - 2z}},\,\,\left| z \right| < 0.5
(2) X ( z ) = z z e b ,    z > e b ;        H ( z ) = z sin ω 0 z 2 2 z cos ω 0 + 1 ,    z > 1 X\left( z \right) = {z \over {z - e^{ - b} }},\,\,\left| z \right| > e^{ - b} ;\;\;\;H\left( z \right) = {{z \cdot \sin \omega _0 } \over {z^2 - 2z\cos \omega _0 + 1}},\,\,\left| z \right| > 1


■ 求解:

(1)解答:
Z { x [ n ] h [ n ] } = 1 2 π j C X ( v ) H ( z v ) v 1 d v Z\left\{ {x\left[ n \right] \cdot h\left[ n \right]} \right\} = {1 \over {2\pi j}} \cdot \oint_C {X\left( v \right) \cdot H\left( {{z \over v}} \right) \cdot v^{ - 1} dv} = 1 2 π j C 1 1 1 2 v 1 1 1 2 z v v 1 d v = {1 \over {2\pi j}} \cdot \oint_C {{1 \over {1 - {1 \over 2}v^{ - 1} }} \cdot {1 \over {1 - 2{z \over v}}}v^{ - 1} dv} = 1 2 π j C v ( v 1 2 ) ( v 2 z ) d v = {1 \over {2\pi j}} \cdot \oint_C {{v \over {\left( {v - {1 \over 2}} \right)\left( {v - 2z} \right)}}dv}

根据 X ( z ) , H ( z ) X\left( z \right),H\left( z \right) 的收敛域,可知: v > 0.5 ,     z v < 0.5 \left| v \right| > 0.5,\,\,\,\left| {{z \over v}} \right| < 0.5
所以上述积分函数包含的极点为: 1 2 ,    2 z {1 \over 2},\,\,2z

Z { x [ n ] h [ n ] } = R e s [ v ( v 1 2 ) ( v 2 z ) ] v = 1 2 + R e s [ v ( v 1 2 ) ( v 2 z ) ] v = 2 z = 1 Z\left\{ {x\left[ n \right] \cdot h\left[ n \right]} \right\} = {\mathop{\rm Re}\nolimits} s\left[ {{v \over {\left( {v - {1 \over 2}} \right)\left( {v - 2z} \right)}}} \right]_{v = {1 \over 2}} + \,{\mathop{\rm Re}\nolimits} s\left[ {{v \over {\left( {v - {1 \over 2}} \right)\left( {v - 2z} \right)}}} \right]_{v = 2z} = 1

所以 x [ n ] h [ n ] = δ [ n ] x\left[ n \right] \cdot h\left[ n \right] = \delta \left[ n \right]

(2)解答:
Z { x [ n ] h [ n ] } = 1 2 π j C X ( v ) H ( z v ) v 1 d v Z\left\{ {x\left[ n \right] \cdot h\left[ n \right]} \right\} = {1 \over {2\pi j}} \cdot \oint_C {X\left( v \right) \cdot H\left( {{z \over v}} \right) \cdot v^{ - 1} dv} = 1 2 π j C v v e b z v sin ω 0 ( z v ) 2 2 ( z v ) cos ω 0 + 1 v 1 d v = {1 \over {2\pi j}} \cdot \oint_C {{v \over {v - e^{ - b} }} \cdot {{{z \over v} \cdot \sin \omega _0 } \over {\left( {{z \over v}} \right)^2 - 2\left( {{z \over v}} \right)\cos \omega _0 + 1}} \cdot v^{ - 1} dv} = 1 2 π j C 2 sin ω 0 v ( v e b ) ( v 2 2 z cos 0 v + z 2 ) d v = {1 \over {2\pi j}} \cdot \oint_C {{{2\sin \omega _0 v} \over {\left( {v - e^{ - b} } \right)\left( {v^2 - 2z\cos _0 v + z^2 } \right)}}dv}

根据 X ( z ) , H ( z ) X\left( z \right),H\left( z \right) 的收敛域,可得: v > e b ,    v < z \left| v \right| > e^{ - b} ,\,\,\left| v \right| < \left| z \right|

所以上述围线积分包含的极点为: e b e^{ - b}
Z { x [ n ] h [ n ] } = R e s [ 2 sin ω 0 v ( v e b ) ( v 2 2 z cos ω 0 v + z 2 ) ] v = e b = z sin ω 0 e b e 2 b 2 e b cos ω 0 z + z 2 Z\left\{ {x\left[ n \right] \cdot h\left[ n \right]} \right\} = {\mathop{\rm Re}\nolimits} s\left[ {{{2\sin \omega _0 v} \over {\left( {v - e^{ - b} } \right)\left( {v^2 - 2z\cos \omega _0 v + z^2 } \right)}}} \right]_{v = e^{ - b} } = {{z \cdot \sin \omega _0 \cdot e^{ - b} } \over {e^{ - 2b} - 2e^{ - b} \cos \omega _0 z + z^2 }}
因此:
x [ n ] h [ n ] = e n b cos ω 0 n u [ n ] x\left[ n \right] \cdot h\left[ n \right] = e^{ - nb} \cos \omega _0 n \cdot u\left[ n \right]

※ 第十题


已知 Z { x [ n ] } = X ( z ) Z\left\{ {x\left[ n \right]} \right\} = X\left( z \right) ,试证明: Z [ k = n x ( k ) ] = z z 1 X ( z )            Z\left[ {\sum\limits_{k = - \infty }^n {x\left( k \right)} } \right] = {z \over {z - 1}}X\left( z \right)\;\;\;\;\;


■ 求解:

证明方法1:利用卷积定理证明:
由于对序列的累加和,可以看成序列与 u [ n ] u\left[ n \right] 的卷积: k = n x [ k ] = x [ n ] u [ n ] \sum\limits_{k = - \infty }^n {x\left[ k \right]} = x\left[ n \right] * u\left[ n \right] 。所以在根据z变换的卷积定理可知,序列的累加和的z变换等于序列的z变换乘以 u [ n ] u\left[ n \right] 的z变换。而: Z { u [ n ] } = z z 1 Z\left\{ {u\left[ n \right]} \right\} = {z \over {z - 1}} ,所以: Z [ k = n x ( k ) ] = z z 1 X ( z )            Z\left[ {\sum\limits_{k = - \infty }^n {x\left( k \right)} } \right] = {z \over {z - 1}}X\left( z \right)\;\;\;\;\;

证明方法2:

Z [ k = n x [ k ] ] = n = ( k = n x [ k ] ) z n Z\left[ {\sum\limits_{k = - \infty }^n {x\left[ k \right]} } \right] = \sum\limits_{n = - \infty }^\infty {\left( {\sum\limits_{k = - \infty }^n {x\left[ k \right]} } \right) \cdot z^{ - n} } = n = ( k = x [ k ] u [ n k ] ) z n = \sum\limits_{n = - \infty }^\infty {\left( {\sum\limits_{k = - \infty }^\infty {x\left[ k \right] \cdot u\left[ {n - k} \right]} } \right) \cdot z^{ - n} } = k = n n = x [ k ] u [ n k ] z n = \sum\limits_{k = - \infty }^n {\sum\limits_{n = - \infty }^\infty {x\left[ k \right] \cdot u\left[ {n - k} \right] \cdot z^{ - n} } } = k = x [ k ] n = u [ n k ] z ( n k ) z k = \sum\limits_{k = - \infty }^\infty {x\left[ k \right]\sum\limits_{n = - \infty }^\infty {u\left[ {n - k} \right] \cdot z^{ - \left( {n - k} \right)} } \cdot z^{ - k} } = k = x [ k ] z k n = u [ n k ] z ( n k ) = z z 1 X ( z ) = \sum\limits_{k = - \infty }^\infty {x\left[ k \right]z^{ - k} \sum\limits_{n = - \infty }^\infty {u\left[ {n - k} \right] \cdot z^{ - \left( {n - k} \right)} } } = {z \over {z - 1}}X\left( z \right)

※ 第十一题


已知 Z { x [ n ] } = X ( z ) Z\left\{ {x\left[ n \right]} \right\} = X\left( z \right) ,并且: x 1 [ n ] = x [ n 3 ] ,      n = 3 k ;      x 1 [ n ] = 0 ,    n = 3 k + 1 , 3 k + 2 x_1 \left[ n \right] = x\left[ {{n \over 3}} \right],\,\,\,\,n = 3k;\,\,\,\,x_1 \left[ n \right] = 0,\,\,n = 3k + 1,3k + 2
x 2 [ n ] = x [ 3 n ] x_2 \left[ n \right] = x\left[ {3n} \right]
求: x 1 [ n ] ,    x 2 [ n ] x_1 \left[ n \right],\,\,x_2 \left[ n \right] 的z变换。


■ 求解:

(1)解答:

X 1 ( z ) = n = x 1 [ n ] z n = k = x [ k ] z 3 k X_1 \left( z \right) = \sum\limits_{n = - \infty }^\infty {x_1 \left[ n \right]z^{ - n} } = \sum\limits_{k = - \infty }^\infty {x\left[ k \right]z^{ - 3k} } = k = x [ k ] ( z 3 ) k = X ( z 3 ) = \sum\limits_{k = - \infty }^\infty {x\left[ k \right]\left( {z^3 } \right)^{ - k} } = X\left( {z^3 } \right)

(2)解答:

猜你喜欢

转载自blog.csdn.net/zhuoqingjoking97298/article/details/106456483