信号与系统2022春季作业-第十一次作业

  ◎ 本文网络下载链接: 信号与系统2022春季作业-第十一次作业 : https://zhuoqing.blog.csdn.net/article/details/124730642

§01 础作业


1.1 z变换性质

1.1.1 求序列z变换

  利用 z 变换的性质求以下序列的 z 变换, 结果中标明收敛域。

( 1 )      x 1 [ n ] = ( − 3 ) n n ⋅ u [ n ] ;                   ( 2 )      x 2 [ n ] = ( n − 4 ) ⋅ u [ n ] ; \left( 1 \right)\,\,\,\,x_1 \left[ n \right] = \left( { - 3} \right)^n n \cdot u\left[ n \right];\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\,\,\,\,x_2 \left[ n \right] = \left( {n - 4} \right) \cdot u\left[ n \right]; (1)x1[n]=(3)nnu[n];(2)x2[n]=(n4)u[n]; ( 3 )     x 3 [ n ] = n ⋅ a n − 2 ⋅ u [ n ] ;                     ( 4 )     x 4 [ n ] = 2 n ⋅ ( ∑ k = 0 + ∞ ( − 1 ) k ⋅ u [ n − k ] ) ; \left( 3 \right)\,\,\,x_3 \left[ n \right] = n \cdot a^{n - 2} \cdot u\left[ n \right];\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\,\,\,x_4 \left[ n \right] = 2^n \cdot \left( {\sum\limits_{k = 0}^{ + \infty } {\left( { - 1} \right)^k \cdot u\left[ {n - k} \right]} } \right); (3)x3[n]=nan2u[n];(4)x4[n]=2n(k=0+(1)ku[nk]); ( 5 )     x 5 [ n ] = a n n + 1 ⋅ u [ n + 1 ] ;                  ( 6 )     x 6 [ n ] = ( 1 3 ) n ⋅ cos ⁡ ( n π 3 ) ⋅ u [ n ] ; \left( 5 \right)\,\,\,x_5 \left[ n \right] = { {a^n } \over {n + 1}} \cdot u\left[ {n + 1} \right];\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 6 \right)\,\,\,x_6 \left[ n \right] = \left( { {1 \over 3}} \right)^n \cdot \cos \left( { { {n\pi } \over 3}} \right) \cdot u\left[ n \right]; (5)x5[n]=n+1anu[n+1];(6)x6[n]=(31)ncos(3nπ)u[n];

1.1.2 初值和终值

  根据下面序列 x [ n ] x\left[ n \right] x[n] 的 z 变换,求序列的初值 x [ 0 ] x\left[ 0 \right] x[0] 以及终值 x [ ∞ ] x\left[ \infty \right] x[]

  (1) X ( z ) = 1 + z − 1 + z − 2 ( 1 − z − 1 ) ( 1 − 2 z − 1 ) X\left( z \right) = { {1 + z^{ - 1} + z^{ - 2} } \over {\left( {1 - z^{ - 1} } \right)\left( {1 - 2z^{ - 1} } \right)}} X(z)=(1z1)(12z1)1+z1+z2
  (2) X ( z ) = 1 ( 1 − 0.5 z − 1 ) ( 1 + 0.5 z − 1 ) X\left( z \right) = {1 \over {\left( {1 - 0.5z^{ - 1} } \right)\left( {1 + 0.5z^{ - 1} } \right)}} X(z)=(10.5z1)(1+0.5z1)1
  (3) X ( z ) = z − 1 1 − 1.5 z − 1 + 0.5 z − 2 X\left( z \right) = { {z^{ - 1} } \over {1 - 1.5z^{ - 1} + 0.5z^{ - 2} }} X(z)=11.5z1+0.5z2z1
  (4) X ( z ) = z 4 ( z − 1 ) ( z − 0.5 ) ( z − 0.5 ) X\left( z \right) = { {z^4 } \over {\left( {z - 1} \right)\left( {z - 0.5} \right)\left( {z - 0.5} \right)}} X(z)=(z1)(z0.5)(z0.5)z4

请大家注意求序列初值和终值的条件。

1.1.3 求序列卷积

  利用 z 变换求一下序列 x [ n ] , h [ n ] x\left[ n \right],h\left[ n \right] x[n],h[n] 的卷积:

  (1) x [ n ] = a n − 1 ⋅ u [ n − 1 ] ;      h [ n ] = u [ n ] x\left[ n \right] = a^{n - 1} \cdot u\left[ {n - 1} \right];\,\,\,\,h\left[ n \right] = u\left[ n \right] x[n]=an1u[n1];h[n]=u[n]
  (2) x [ n ] = 2 u [ n − 1 ] ;      h [ n ] = ∑ k = 0 + ∞ ( − 1 ) k δ [ n − k ] x\left[ n \right] = 2u\left[ {n - 1} \right];\,\,\,\,h\left[ n \right] = \sum\limits_{k = 0}^{ + \infty } {\left( { - 1} \right)^k \delta \left[ {n - k} \right]} x[n]=2u[n1];h[n]=k=0+(1)kδ[nk]

提示:应用 z 变换的时域卷积定理。

1.1.4 求序列乘积的z变换

  已知序列 x [ n ] , h [ n ] x\left[ n \right],h\left[ n \right] x[n],h[n] 的 z 变换为 X ( z ) , H ( z ) X\left( z \right),H\left( z \right) X(z),H(z) ,如下式所示。 应用 z 域卷积定理求 Z { x [ n ] ⋅ h [ n ] } Z\left\{ {x\left[ n \right] \cdot h\left[ n \right]} \right\} Z{ x[n]h[n]}

  (1) X ( z ) = 1 1 − 1 2 z − 1 ,    ∣ z ∣ > 0.5 ;      H ( z ) = 1 1 − 2 z ,    ∣ z ∣ < 0.5 X\left( z \right) = {1 \over {1 - {1 \over 2}z^{ - 1} }},\,\,\left| z \right| > 0.5;\,\,\,\,H\left( z \right) = {1 \over {1 - 2z}},\,\,\left| z \right| < 0.5 X(z)=121z11,z>0.5;H(z)=12z1,z<0.5

  (2) X ( z ) = z z − e − b ,    ∣ z ∣ > e − b ;     H ( z ) = z ⋅ sin ⁡ ω 0 z 2 − 2 z cos ⁡ ω 0 + 1 ,    ∣ z ∣ > 1 X\left( z \right) = {z \over {z - e^{ - b} }},\,\,\left| z \right| > e^{ - b} ;\,\,\,H\left( z \right) = { {z \cdot \sin \omega _0 } \over {z^2 - 2z\cos \omega _0 + 1}},\,\,\left| z \right| > 1 X(z)=zebz,z>eb;H(z)=z22zcosω0+1zsinω0,z>1

提示: 应用 z 变换的变换域卷积定理;

1.1.5 证明z变换累加性质

  已知 Z { x [ n ] } = X ( z ) Z\left\{ {x\left[ n \right]} \right\} = X\left( z \right) Z{ x[n]}=X(z) , 试证明: Z { ∑ k = − ∞ n x [ k ] } = z z − 1 X ( z ) Z\left\{ {\sum\limits_{k = - \infty }^n {x\left[ k \right]} } \right\} = {z \over {z - 1}}X\left( z \right) Z{ k=nx[k]}=z1zX(z)

1.1.6 序列尺度特性

  已知 Z { x [ n ] } = X ( z ) Z\left\{ {x\left[ n \right]} \right\} = X\left( z \right) Z{ x[n]}=X(z) ,并且 x 1 [ n ] = x [ 4 n ] ;      x 2 [ n ] = { x [ n / 4 ] ,      n = 4 k                         0 ,       n = 4 k + 1 , 4 k + 2 , 4 k + 3 x_1 \begin{bmatrix} n \end{bmatrix} = x\begin{bmatrix} {4n} \end{bmatrix};\,\,\,\,x_2 \begin{bmatrix} n \end{bmatrix} = \left\{ \begin{matrix} {x\begin{bmatrix} {n/4} \end{bmatrix},\,\,\,\,n = 4k\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{0,\,\,\,\,\,n = 4k + 1,4k + 2,4k + 3}\\\end{matrix} \right. x1[n]=x[4n];x2[n]={ x[n/4],n=4k0,n=4k+1,4k+2,4k+3

  求: x 1 [ n ] , x 2 [ n ] x_1 \left[ n \right],x_2 \left[ n \right] x1[n],x2[n] 的 z 变换。

提示: x 1 [ n ] x_1 \left[ n \right] x1[n] 的 z 变换需要用到如下的一个公式, 表示对于序列的抽取: 1 4 [ 1 n + j n + ( − 1 ) n + ( − j ) n ] = { 1 ,      n = 4 k                                        0 ,       n = 4 k + 1 , 4 k + 2 , 4 k + 3 {1 \over 4}\begin{bmatrix} {1^n + j^n + \left( { - 1} \right)^n + \left( { - j} \right)^n } \end{bmatrix} = \left\{ \begin{matrix} {1,\,\,\,\,n = 4k\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{0,\,\,\,\,\,n = 4k + 1,4k + 2,4k + 3}\\\end{matrix} \right. 41[1n+jn+(1)n+(j)n]={ 1,n=4k0,n=4k+1,4k+2,4k+3
对于 x 2 [ n ] x_2 \left[ n \right] x2[n] 的 z 变换可以直接应用 z 变换定义,使用变量替换即可。

1.2 求解微分方程

  应用拉普拉斯变换求解下面微分方程, 并求系统的零输入响应和零状态响应。

  (1) d 2 d t 2 y ( t ) + 2 d d t y ( t ) + y ( t ) = δ ( t ) + 3 δ ′ ( t ) { {d^2 } \over {dt^2 }}y\left( t \right) + 2{d \over {dt}}y\left( t \right) + y\left( t \right) = \delta \left( t \right) + 3\delta '\left( t \right) dt2d2y(t)+2dtdy(t)+y(t)=δ(t)+3δ(t) y ( 0 − ) = 2 ,    y ′ ( 0 − ) = 1 y\left( {0_ - } \right) = 2,\,\,y'\left( {0_ - } \right) = 1 y(0)=2,y(0)=1

  (2) d 2 d t 2 y ( t ) + 5 d d t y ( t ) + 6 y ( t ) = 3 x ( t ) { {d^2 } \over {dt^2 }}y\left( t \right) + 5{d \over {dt}}y\left( t \right) + 6y\left( t \right) = 3x\left( t \right) dt2d2y(t)+5dtdy(t)+6y(t)=3x(t) x ( t ) = e − t u ( t ) ,    y ( 0 − ) = 0 ,    y ′ ( 0 − ) = 1 x\left( t \right) = e^{ - t} u\left( t \right),\,\,y\left( {0_ - } \right) = 0,\,\,y'\left( {0_ - } \right) = 1 x(t)=etu(t),y(0)=0,y(0)=1

1.3 求解差分方程

  应用单边 z 变换求解下列差分方程, 并求出零输入响应和零状态响应。

  (1) y [ n ] + 3 y [ n − 1 ] = x [ n ] ,     x [ n ] = ( 1 2 ) n ⋅ u [ n ] ,    y [ − 1 ] = 1 y\left[ n \right] + 3y\left[ {n - 1} \right] = x\left[ n \right],\,\,\,x\left[ n \right] = \left( { {1 \over 2}} \right)^n \cdot u\left[ n \right],\,\,y\left[ { - 1} \right] = 1 y[n]+3y[n1]=x[n],x[n]=(21)nu[n],y[1]=1
  (2) y [ n ] − 1 2 y [ n − 1 ] = x [ n ] − 1 2 x [ n − 1 ] ,    x [ n ] = u [ n ] ,    y [ − 1 ] = 1 y\left[ n \right] - {1 \over 2}y\left[ {n - 1} \right] = x\left[ n \right] - {1 \over 2}x\left[ {n - 1} \right],\,\,x\left[ n \right] = u\left[ n \right],\,\,y\left[ { - 1} \right] = 1 y[n]21y[n1]=x[n]21x[n1],x[n]=u[n],y[1]=1

1.4 系统的单位冲激响应

  设LTI系统在激励 x ( t ) = e − t u ( t ) x\left( t \right) = e^{ - t} u\left( t \right) x(t)=etu(t) 作用下, 系统的零状态响应为: y ( t ) = 1 2 e − t − e − 2 t + 2 e − 3 t y\left( t \right) = {1 \over 2}e^{ - t} - e^{ - 2t} + 2e^{ - 3t} y(t)=21ete2t+2e3t 求该系统的单位冲激响应 h ( t ) h\left( t \right) h(t)

§02 验作业


2.1 绘制s平面到z平面的映射

2.1.1 实验要求

  通过软件编程观察s平面中, 中心在原点,半径不断变化的圆对应的 z 平面上的曲线。 s 复平面与 z 复平面之间的对于关系为: z = e s T s z = e^{sT_s } z=esTs 可以假设其中的采样时间间隔 T s T_s Ts 等于1。

这个问题,最初是由同学提问引起的。 “老师好,请问上课讲的这个的s平面图形是什么样的呀?当时没来得及记下来。
▲ 图2.1.1 学生的笔记

▲ 图2.1.1 学生的笔记

2.1.2 参考Python程序

#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST1.PY                     -- by Dr. ZhuoQing 2021-06-16
#
# Note:
#============================================================

from headm import *
from tsmodule.tsdraw        import *

theta = linspace(0, 2*pi, 25000)

s = [cos(t) + sin(t)*1j for t in theta]

gif = PlotGIF()

for r in linspace(0.1, 10, 100):
    z = [exp(ss*r) for ss in s]

    plt.clf()
    plt.plot(real(z), imag(z))
    plt.xlabel("Real")
    plt.ylabel("Image")
    title = "Ratio:%f"%r
    plt.title(title)
    plt.grid(True)
    plt.tight_layout()
#    plt.show()
    plt.draw()
    plt.pause(.1)
    gif.append(plt)

gif.save(r'd:\temp\1.gif')

#------------------------------------------------------------
#        END OF FILE : TEST1.PY
#============================================================

(1)0<R<10

▲ 图2.1.2 . R在0到10之间变化

▲ 图2.1.2 . R在0到10之间变化

(2)0<R<20

▲ 图2.1.3 . R在0到20之间变化

▲ 图2.1.3 . R在0到20之间变化

  由于从s平面到z平面是多对1的映射,所以绘制这样的关系比较简单。但反过来,从z平面到s平面的映射是1对多的映射,所以绘制对应的曲线稍微麻烦一些。


■ 相关文献链接:

● 相关图表链接:

猜你喜欢

转载自blog.csdn.net/zhuoqingjoking97298/article/details/124730642