2020年春季学期信号与系统课程作业参考答案-第十四次作业

信号与系统课程第十四次作业参考答案
 


 

※ 第一题


用闭式表达式写出下面有限长序列的离散傅里叶变换(DFT):
(1) x [ n ] = δ [ n ] x\left[ n \right] = \delta \left[ n \right]
(2) x [ n ] = δ [ n n 0 ] ,     ( 0 < n 0 < N ) x\left[ n \right] = \delta \left[ {n - n_0 } \right],\,\,\,\left( {0 < n_0 < N} \right)
(3) x [ n ] = a n R N [ n ] x\left[ n \right] = a^n R_N \left[ n \right]
(4) x [ n ] = e j ω 0 n R N [ n ] x\left[ n \right] = e^{j\omega _0 n} \cdot R_N \left[ n \right]


■ 求解:

(1)解答:
x ( n ) = δ ( n )            x\left( n \right) = \delta \left( n \right)\;\;\;\;\;

X ( k ) = n = 0 N 1 x [ n ] e j 2 π N n k = 1 X\left( k \right) = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right]e^{ - j{{2\pi } \over N}nk} } = 1

(2)解答:
x ( n ) = δ ( n n 0 ) ,        ( 0 < n 0 < N )            x\left( n \right) = \delta \left( {n - n_0 } \right),\,\,\,\,\,\,\left( {0 < n_0 < N} \right)\;\;\;\;\;

X ( k ) = n = 0 N 1 x [ n ] e j 2 π N n k = e j 2 π N n 0 k X\left( k \right) = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right]e^{ - j{{2\pi } \over N}nk} } \, = e^{ - j{{2\pi } \over N}n_0 k}

(3)解答:
x ( n ) = a n R N ( n )            x\left( n \right) = a^n R_N \left( n \right)\;\;\;\;\;

X ( k ) = n = 0 N 1 a n R N [ n ] W n k = n = 0 N 1 a W k = 1 ( a W k ) N 1 a W k = 1 a N 1 a e j 2 π N k X\left( k \right) = \sum\limits_{n = 0}^{N - 1} {a^n R_N \left[ n \right]W^{nk} } = \sum\limits_{n = 0}^{N - 1} {aW^k } = {{1 - \left( {aW^k } \right)^N } \over {1 - aW^k }}\, = {{1 - a^N } \over {1 - ae^{ - j{{2\pi } \over N}k} }}

(4)解答:
x ( n ) = e j ω 0 n R N ( n )            x\left( n \right) = e^{j\omega _0 n} R_N \left( n \right)\;\;\;\;\;

X ( k ) = a = e j ω 0 1 e j ω 0 N 1 e j ( ω 0 2 π N k ) X\left( k \right)\mathop = \limits^{a = e^{j\omega _0 } } {{1 - e^{j\omega _0 N} } \over {1 - e^{j\left( {\omega _0 - {{2\pi } \over N}k} \right)} }}

※ 第二题


x [ n ] x\left[ n \right] 如下图所示,试绘出解答:
(1) x [ n ] x\left[ n \right] x [ n ] x\left[ n \right] 的线卷积;
(2) x [ n ] x\left[ n \right] x [ n ] x\left[ n \right] 的4点圆卷积;
(3) x [ n ] x\left[ n \right] x [ n ] x\left[ n \right] 的10点圆卷积;
(4)如果是 x [ n ] x\left[ n \right] x [ n ] x\left[ n \right] 的圆卷积和线卷积相同,求长度L之最小值。


■ 求解:

※ 第三题


已知序列 x [ n ] = { 1 , 2 , 3 , 4 , 5 } x\left[ n \right] = \left\{ {1,2,3,4,5} \right\} h [ n ] = { 1 , 1 , 1 , 1 } h\left[ n \right] = \left\{ {1,1,1,1} \right\} 。求:
(1) y [ n ] = x [ n ] h [ n ] y\left[ n \right] = x\left[ n \right] * h\left[ n \right]
(2) y [ n ] = x [ n ] 7 h [ n ] y\left[ n \right] = x\left[ n \right] \otimes _7 h\left[ n \right]
(3) y [ n ] = x [ n ] 8 h [ n ] y\left[ n \right] = x\left[ n \right] \otimes _8 h\left[ n \right]

注: 7 , 8 \otimes _7 , \otimes _8 分别表示长度为7,8的圆卷积。


■ 求解:

(1)解答:

(2)解答:

(3)解答:
由于\nL.≥4+5-1=8,所以圆卷积结果与线卷积结果相同:

y 8 [ n ] = { 1 , 3 , 6 , 10 , 14 , 12 , 9 , 5 } y_{ \otimes _8 } \left[ n \right] = \left\{ {1,3,6,10,14,12,9,5} \right\}

※ 第四题


x [ n ] x\left[ n \right] 为有限长序列,当 n < 0 n < 0 n N n \ge N 时, x [ n ] = 0 x\left[ n \right] = 0 。且 N N 为偶数。
已知 D F T { x [ n ] } = X [ k ] DFT\left\{ {x\left[ n \right]} \right\} = X\left[ k \right] ,试利用 X [ k ] X\left[ k \right] 来表示一下个序列的DFT:


■ 求解:

(1)解答:
X 1 [ k ] = n = 0 N 1 x [ N 1 n ] W n k = m = N 1 0 x [ m ] W ( N 1 m ) k X_1 \left[ k \right] = \sum\limits_{n = 0}^{N - 1} {x\left[ {N - 1 - n} \right]W^{nk} } \, = \sum\limits_{m = N - 1}^0 {x\left[ m \right]W^{\left( {N - 1 - m} \right)k} } = m = 0 N 1 x [ m ] W m k W k = X [ k ] N e j 2 π k N = \sum\limits_{m = 0}^{N - 1} {x\left[ m \right]W^{ - mk} \cdot W^{ - k} } \, = X\left[ { - k} \right]_N e^{j{{2\pi k} \over N}}

(2)解答:
X 2 [ k ] = n = 0 N 1 ( 1 ) n x [ n ] W n k = n = 0 N 1 x [ n ] e j n π e j 2 π N k X_2 \left[ k \right] = \sum\limits_{n = 0}^{N - 1} {\left( { - 1} \right)^n x\left[ n \right]W^{nk} } = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right]e^{jn\pi } e^{j{{2\pi } \over N}k} } = n = 0 N 1 x [ n ] e j 2 π N n ( k + N 2 ) = X [ k ± N 2 ] N = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right]e^{j{{2\pi } \over N}n\left( {k + {N \over 2}} \right)} } = X\left[ {k \pm {N \over 2}} \right]_N

(3)解答:
X 3 [ k ] = n = 0 2 N 1 x 3 [ n ] W 2 N n k = n = 0 N 1 x [ n ] W 2 N n k + n = N 2 N 1 x [ n N ] W 2 N n k X_3 \left[ k \right] = \sum\limits_{n = 0}^{2N - 1} {x_3 \left[ n \right]W_{2N}^{nk} } = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot W_{2N}^{nk} } + \sum\limits_{n = N}^{2N - 1} {x\left[ {n - N} \right] \cdot W_{2N}^{nk} } = n = 0 N 1 x [ n ] W N n k 2 + m = 0 N 1 x [ m ] W N ( m + N ) k 2 = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot W_N^{n{k \over 2}} } + \sum\limits_{m = 0}^{N - 1} {x\left[ m \right] \cdot W_N^{\left( {m + N} \right){k \over 2}} } = n = 0 N 1 x [ n ] W N n k 2 + W N k N 2 m = 0 N 1 x [ m ] W N m k 2 = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot W_N^{{{nk} \over 2}} } + W_N^{{{kN} \over 2}} \sum\limits_{m = 0}^{N - 1} {x\left[ m \right] \cdot W_N^{{{mk} \over 2}} } = [ 1 + ( 1 ) k ] n = 0 N 1 x [ n ] W N n k 2 = [ 1 + ( 1 ) k ] X [ k 2 ] N = \left[ {1 + \left( { - 1} \right)^k } \right]\sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot W_N^{{{nk} \over 2}} } = \left[ {1 + \left( { - 1} \right)^k } \right]X\left[ {{k \over 2}} \right]_N

(4)解答:
X 4 [ k ] N 2 = n = 0 N 2 1 { x [ n ] + x [ n + N 2 ] } W N 2 n k X_4 \left[ k \right]_{{N \over 2}} = \sum\limits_{n = 0}^{{N \over 2} - 1} {\left\{ {x\left[ n \right] + x\left[ {n + {N \over 2}} \right]} \right\} \cdot W_{{N \over 2}}^{nk} } = n = 0 N 2 j 1 x [ n ] W N 2 n k + m = N 2 N 1 x [ m ] W N 2 m k = \sum\limits_{n = 0}^{{N \over 2}j - 1} {x\left[ n \right] \cdot W_N^{2nk} } + \sum\limits_{m = {N \over 2}}^{N - 1} {x\left[ m \right] \cdot W_N^{2mk} } = n = 0 N 1 x [ n ] W N 2 n k = X [ 2 k ] = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot W_N^{2nk} } = X\left[ {2k} \right]

(5)解答:
X 5 [ k ] = n = 0 N 1 x [ n ] W 2 N n k = n = 0 N 1 x [ n ] W N n k 2 = X [ k 2 ] X_5 \left[ k \right] = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot W_{2N}^{nk} } = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot W_N^{{{nk} \over 2}} } = X\left[ {{k \over 2}} \right]

(6)解答:
X 6 [ k ] = n = 0 2 N 1 x 6 [ n ] W 2 N n k = n = 0 N 1 x [ n ] W N n k = X [ k ] X_6 \left[ k \right] = \sum\limits_{n = 0}^{2N - 1} {x_6 \left[ n \right] \cdot W_{2N}^{nk} } = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot W_N^{nk} } = X\left[ k \right]

(7)解答:
X 7 [ k ] = n = 0 N 1 x 7 [ n ] W N 2 n k = n = 0 N 1 x [ n ] 1 + ( 1 ) n 2 W N n k X_7 \left[ k \right] = \sum\limits_{n = 0}^{N - 1} {x_7 \left[ n \right] \cdot W_{{N \over 2}}^{nk} } = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot {{1 + \left( { - 1} \right)^n } \over 2}W_N^{nk} } = 1 2 { n = 0 N 1 x [ n ] W N n k + n = 0 N 1 x [ n ] ( 1 ) n W N n k } = {1 \over 2}\left\{ {\sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot W_N^{nk} } + \sum\limits_{n = 0}^{N - 1} {x\left[ n \right]\left( { - 1} \right)^n W_N^{nk} } } \right\} = 1 2 { X [ k ] + X [ k + N 2 ] N } = {1 \over 2}\left\{ {X\left[ k \right] + X\left[ {k + {N \over 2}} \right]_N } \right\}

※ 第五题


有一个FFT处理器,用来估计实数信号的频谱。要求指标:
(1)频谱间的分辨率为 f 1 5 H z f_1 \le 5Hz
(2)信号的最高频率 f m 1.25 k H z f_m \le 1.25kHz
(3)点数 N N 必须是2的整数次幂。

试确定:
(1) 记录时间长度 T 1 T_1
(2)抽样点间的时间间隔 T s T_s
(3)一个记录过程的点数 N N


■ 求解:

(1) T 1 = 1 f 1 1 5 = 0.2 s T_1 = {1 \over {f_1 }} \ge {1 \over 5} = 0.2s

(2) T s 1 2 f m = 0.4 m s T_s \le {1 \over {2f_m }} = 0.4ms

(3) N = T 1 T 2 500 N = {{T_1 } \over {T_2 }} \ge 500

N = 512 N = 512

※ 第六题


一直序列 x [ n ] x\left[ n \right] 的长度为218, h [ n ] h\left[ n \right] 的长度为12.
(1)用直接卷激发求其线卷积,给出乘法的次数;
(2)采用基-2的快速傅里叶变换的快速卷积发,给出乘法的次数;
(3)比较以上结果,并得出你的结论。


■ 求解:

(1) 直接进行卷积运算,结果长度为218+12-1=229. 总的实数乘法次数为: 218×12=2616.

(2) 使用基-2 FFT进行运算,需要将两个序列都至 长度为229的序列。取最接近的2的整数次幂, 将两个序列都补零为256长度的序列。

长度为N(2的整数次幂)的FFT运算包括(Nlog\2.N)2)次复数乘法运算。使用FFT进行卷积运算需要进行3次FFT运算(两次正变换,一次反变换)和一次数组乘法运算,因此总的复数乘法运算量为:(3Nlog\2.2/2+N)。一个复数乘法运算包括有4次实数乘法运算,所以总共乘法运算的次数为 4(3Nlog\2.2/2+N)。

根据上述分析,可以计算出基-2 的FFT进行计算序列卷积的乘法计算量为:4*(3 * 256 log\2.256 / 2 + 256)=13312
对比两种计算方法所需要的乘法次数,可以看出,在序列长度比较小的情况下,使用基于-2的 FFT反而计算量增加了。

※ 第七题


已知 x [ n ] x\left[ n \right] 是长度为 N N 的序列, X [ k ] = D F T { x [ n ] } X\left[ k \right] = DFT\left\{ {x\left[ n \right]} \right\} ,把 x [ n ] x\left[ n \right] 的长度扩大 r r 倍,即:
y [ n ] = x [ n ] ,      0 n N 1 y\left[ n \right] = x\left[ n \right],\,\,\,\,0 \le n \le N - 1 y [ n ] = 0 ,      N n r N 1 y\left[ n \right] = 0,\,\,\,\,N \le n \le rN - 1
又: Y [ k 1 ] = D F T { y [ n ] } ,       0 k r N 1 Y\left[ {k_1 } \right] = DFT\left\{ {y\left[ n \right]} \right\},\,\,\,\,\,0 \le k \le rN - 1
Y [ k 1 ] Y\left[ {k_1 } \right] X [ k ] X\left[ k \right] 之间的关系。


■ 求解:

(1)
Y [ k 1 ] = n = 0 r N 1 y [ n ] W r N n k 1 = n = 0 N 1 x [ n ] W r N n k 1 Y\left[ {k_1 } \right] = \sum\limits_{n = 0}^{rN - 1} {y\left[ n \right] \cdot W_{rN}^{nk_1 } } = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot W_{rN}^{nk_1 } } = n = 0 N 1 x [ n ] W N n k 1 r = X [ k 1 r ] = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot W_N^{{{nk_1 } \over r}} } = X\left[ {{{k_1 } \over r}} \right]

(2)

Y [ k 1 ] = n = 0 N 1 x [ n ] W r N n k 1 = n = 0 N 1 ( 1 N k = 0 N 1 X [ k ] W N n k ) W r N n k 1 Y\left[ {k_1 } \right] = \sum\limits_{n = 0}^{N - 1} {x\left[ n \right] \cdot W_{rN}^{nk_1 } } \, = \sum\limits_{n = 0}^{N - 1} {\left( {{1 \over N}\sum\limits_{k = 0}^{N - 1} {X\left[ k \right] \cdot W_N^{ - nk} } } \right)} \cdot W_{rN}^{nk_1 } = 1 N k = 0 N 1 X [ k ] n = 0 N 1 W r N n k r W r N n k 1 = 1 N n = 0 N 1 X [ k ] 1 W r N k 1 N 1 W r N k 1 k r = {1 \over N}\sum\limits_{k = 0}^{N - 1} {X\left[ k \right]\sum\limits_{n = 0}^{N - 1} {W_{rN}^{ - nkr} W_{rN}^{nk_1 } } } = {1 \over N}\sum\limits_{n = 0}^{N - 1} {X\left[ k \right]{{1 - W_{rN}^{k_1 N} } \over {1 - W_{rN}^{k_1 - kr} }}}

※ 第八题


一下序列的长度为 N N ,求其DFT的闭合表达式:

(1) x [ n ] = sin ( ω 0 n ) R N [ n ] x\left[ n \right] = \sin \left( {\omega _0 n} \right) \cdot R_N \left[ n \right]

(2) x [ n ] = a n R N [ n ] x\left[ n \right] = a^n \cdot R_N \left[ n \right]

(3) x [ n ] = n 2 R N [ n ] x\left[ n \right] = n^2 \cdot R_N \left[ n \right]


■ 求解:

(1)
X ( k ) = n = 0 N 1 sin ( ω 0 n ) e j 2 π k n N X\left( k \right) = \sum\limits_{n = 0}^{N - 1} {\sin \left( {\omega _0 n} \right) \cdot e^{ - j{{2\pi kn} \over N}} }

= n = 0 N 1 1 2 j ( e j ω 0 n e j ω 0 n ) e j 2 π k N n = \sum\limits_{n = 0}^{N - 1} {{1 \over {2j}}\left( {e^{j\omega _0 n} - e^{ - j\omega _0 n} } \right) \cdot e^{ - j{{2\pi k} \over N} \cdot n} }

= 1 2 j [ 1 e j ω 0 N 1 e j ( ω 0 2 π k N ) 1 e j ω 0 N 1 e j ( ω 0 + 2 π k N ) ] = {1 \over {2j}}\left[ {{{1 - e^{j\omega _0 N} } \over {1 - e^{j\left( {\omega _0 - {{2\pi k} \over N}} \right)} }} - {{1 - e^{ - j\omega _0 N} } \over {1 - e^{ - j\left( {\omega _0 + {{2\pi k} \over N}} \right)} }}} \right]

= 1 2 j ( 1 e j ω 0 N ) ( 1 e j ( ω 0 + 2 π k N ) ) ( 1 e j ω 0 N ) ( 1 e j ( ω 0 2 π k N ) ) ( 1 e j ( ω 0 2 π k N ) ) ( 1 e j ( ω 0 + 2 π k N ) ) = {1 \over {2j}} \cdot {{\left( {1 - e^{j\omega _0 N} } \right) \cdot \left( {1 - e^{ - j\left( {\omega _0 + {{2\pi k} \over N}} \right)} } \right) - \left( {1 - e^{ - j\omega _0 N} } \right) \cdot \left( {1 - e^{j\left( {\omega _0 {\rm{ - }}{{{\rm{2}}\pi k} \over N}} \right)} } \right)} \over {\left( {1 - e^{j\left( {\omega _0 - {{2\pi k} \over N}} \right)} } \right) \cdot \left( {1 - e^{ - j\left( {\omega _0 + {{2\pi k} \over N}} \right)} } \right)}}

= sin ω 0 e j 2 π k N sin ( ω 0 N ) + sin ( ω 0 N ω 0 ) e j 2 π k N 1 2 cos ω 0 e j 2 π k N + e j 4 π k N = {{\sin \omega _0 e^{ - j{{2\pi k} \over N}} - \sin \left( {\omega _0 N} \right) + \sin \left( {\omega _0 N - \omega _0 } \right)e^{ - j{{2\pi k} \over N}} } \over {1 - 2\cos \omega _0 e^{ - j{{2\pi k} \over N}} + e^{ - j{{4\pi k} \over N}} }}

(2)
X ( k ) = n = 0 N 1 a n e j 2 π N k n X\left( k \right) = \sum\limits_{n = 0}^{N - 1} {a^n e^{ - j{{2\pi } \over N}kn} } = 1 ( a e j 2 π k N ) N 1 a e j 2 π k N = 1 a N 1 a e j 2 π k N = {{1 - \left( {ae^{ - j{{2\pi k} \over N}} } \right)^N } \over {1 - a \cdot e^{ - j{{2\pi k} \over N}} }} = {{1 - a^N } \over {1 - a \cdot e^{ - j{{2\pi k} \over N}} }}

(3)
n = 0 N 1 n W n = W + 2 W 2 + + ( N 1 ) W N 1 \sum\limits_{n = 0}^{N - 1} {nW^n } = W + 2W^2 + \cdot \cdot \cdot + \left( {N - 1} \right)W^{N - 1} = W + W 2 + + W N 1 + = W + W^2 + \cdot \cdot \cdot + W^{N - 1} + W 2 + + W N 1 + W^2 + \cdot \cdot \cdot + W^{N - 1} + W 3 + + W N 1 + W^3 + \cdot \cdot \cdot + W^{N - 1} + \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot W N 1 W^{N - 1}

= W W N 1 W + W 2 W N 1 W + + W N 1 W N 1 W = {{W - W^N } \over {1 - W}} + {{W^2 - W^N } \over {1 - W}} + \cdot \cdot \cdot + {{W^{N - 1} - W^N } \over {1 - W}} = n = 0 N 1 W n N W N 1 W = W W N 1 W ( N 1 ) W N 1 W = {{\sum\limits_{n = 0}^{N - 1} {W^n } - N \cdot W^N } \over {1 - W}} = {{{{W - W^N } \over {1 - W}} - \left( {N - 1} \right)W^N } \over {1 - W}} = W 1 1 W ( N 1 ) 1 W = N 1 W = {{{{W - 1} \over {1 - W}} - \left( {N - 1} \right)} \over {1 - W}} = {{ - N} \over {1 - W}}

n = 0 N 1 n 2 W n = W + 4 W 2 + 9 W 3 + + ( 2 N 3 ) W N 1 \sum\limits_{n = 0}^{N - 1} {n^2 W^n } = W + 4W^2 + 9W^3 + \cdot \cdot \cdot + \left( {2N - 3} \right)W^{N - 1} = W + W 2 + W 3 +                       + W N 1 + = W + W^2 + W^3 + \,\,\,\,\,\,\,\,\,\, \cdot \cdot \cdot \,\,\,\,\,\,\,\,\,\, + W^{N - 1} + 3 W 2 + 3 W 3 +                     + 3 W N 1 + 3W^2 + 3W^3 + \;\;\;\; \cdot \cdot \cdot \,\,\,\,\,\,\,\,\,\, + 3W^{N - 1} + 5 W 3 +                    + 5 W N 1 + 5W^3 + \,\,\,\,\,\,\; \cdot \cdot \cdot \,\,\,\,\,\,\,\,\, + 5W^{N - 1} +                              + \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + ( 2 N 3 ) W N 1 \left( {2N - 3} \right)W^{N - 1}
$$$$ = W W N 1 W + 3 ( W 2 W N ) 1 W + 5 ( W 3 W N ) 1 W + + ( 2 N 3 ) ( W N 1 W N ) 1 W = {{W - W^N } \over {1 - W}} + {{3\left( {W^2 - W^N } \right)} \over {1 - W}} + {{5\left( {W^3 - W^N } \right)} \over {1 - W}} + \cdot \cdot \cdot + {{\left( {2N - 3} \right)\left( {W^{N - 1} - W^N } \right)} \over {1 - W}} = 1 1 W [ k = 1 N 1 ( 2 k 1 ) W k k = 1 N 1 ( 2 k 1 ) W N ] = {1 \over {1 - W}}\left[ {\sum\limits_{k = 1}^{N - 1} {\left( {2k - 1} \right)W^k } - \sum\limits_{k = 1}^{N - 1} {\left( {2k - 1} \right)} W^N } \right] = 1 1 W [ 2 n = 1 N 1 n W n n = 1 N 1 W n n = 1 N 1 ( 2 k 1 ) ] = {1 \over {1 - W}}\left[ {2\sum\limits_{n = 1}^{N - 1} {nW^n } - \sum\limits_{n = 1}^{N - 1} {W^n } - \sum\limits_{n = 1}^{N - 1} {\left( {2k - 1} \right)} } \right] = 1 1 W [ 2 N 1 W W W N 1 W ( N 1 ) 2 ] = {1 \over {1 - W}}\left[ {2 \cdot {{ - N} \over {1 - W}} - {{W - W^N } \over {1 - W}} - \left( {N - 1} \right)^2 } \right] = 2 N ( W 1 ) ( N 1 ) ( 1 W ) ( 1 W ) 2 = N ( N 1 ) W N 2 ( 1 W ) 2 = {{ - 2N - \left( {W - 1} \right) - \left( {N - 1} \right)\left( {1 - W} \right)} \over {\left( {1 - W} \right)^2 }} = {{N\left( {N - 1} \right)W - N^2 } \over {\left( {1 - W} \right)^2 }}

※ 第九题


证明DFT的对称性:

若: D F T { x [ n ] } = X [ k ] DFT\left\{ {x\left[ n \right]} \right\} = X\left[ k \right]

则: D F T { X [ n ] } = N [ [ k ] ] N R N [ n ] DFT\left\{ {X\left[ n \right]} \right\} = N \cdot \left[ {\left[ { - k} \right]} \right]_N \cdot R_N \left[ n \right]


■ 证明:

根据IDFT公式: x [ n ] = 1 N k = 0 N X [ k ] e j 2 π k n N x\left[ n \right] = {1 \over N}\sum\limits_{k = 0}^N {X\left[ k \right] \cdot e^{{{j2\pi kn} \over N}} }
因此: N x [ n ] = k = 0 N X [ k ] e j 2 π k N ( n ) N \cdot x\left[ n \right] = \sum\limits_{k = 0}^N {X\left[ k \right] \cdot e^{{{ - j2\pi k} \over N}\left( { - n} \right)} }
所以: D F T { X [ n ] } = N x ( ( k ) ) N R [ n ] DFT\left\{ {X\left[ n \right]} \right\} = N \cdot x\left( {\left( { - k} \right)} \right)_N \cdot R\left[ n \right]

猜你喜欢

转载自blog.csdn.net/zhuoqingjoking97298/article/details/106456567