信号与系统分析2022春季作业-参考答案:第一次作业

作业题目
目 录
Contents
参考答案
绘制信号波形
写出信号函数表达式
判断信号的周期性
冲激信号的抽样特性
信号的直流分量

  封面动图来自于: SHUTTERSTOCK网站

§00 业题目

  第一次作业链接: 第一次作业 : https://zhuoqing.blog.csdn.net/article/details/123113465

§01 考答案


1.1 绘制信号波形

(1)必做题

 Ⅰ.第一小题

  求解:
▲ 带有直流分量正弦振荡信号

▲ 带有直流分量正弦振荡信号

from headm import *

t = linspace(-5,5,1000)
ft = 1+cos(2*pi*t)

plt.plot(t,ft)

plt.xlabel("t")
plt.ylabel("f(t)")
plt.grid(True)
plt.tight_layout()
plt.show()
 Ⅱ.第二小题

  求解:
▲ 幅度调制正弦振荡信号

▲ 幅度调制正弦振荡信号

ft = (1+cos(pi*t)/3)*sin(8*pi*t)
 Ⅲ.第三小题

  求解:
▲ 双边指数震荡衰减小囊括

▲ 双边指数震荡衰减小囊括

t = linspace(-5,5,1000)
ft = 2*sin(20*t)*exp(-abs(t))
 Ⅳ.第四小题

  求解:
▲ 复合信号

▲ 复合信号

from headm import *

t = linspace(-5,5,1000)
ft = heaviside(sin(2*pi*t), 0)

plt.plot(t,ft)

plt.xlabel("t")
plt.ylabel("f(t)")
plt.grid(True)
plt.tight_layout()
plt.show()
 Ⅴ.第五小题

  求解:
▲ 有限长指数信号

▲ 有限长指数信号

t = linspace(-5,5,1000)
ft = exp(-0.5*t)*(heaviside(t+1, 0)-heaviside(t-1,0))
 Ⅵ.第六小题

  求解:
▲ 指数序列

▲ 指数序列

from headm import *

n = arange(0, 10)
fn = (0.5)**n

plt.stem(n, fn)

plt.xlabel("n")
plt.ylabel("f[n]")
plt.grid(True)
plt.tight_layout()
plt.show()
 Ⅶ.第七小题

  求解:
▲ 左边指数序列信号

▲ 左边指数序列信号

n = arange(-10, 0)
fn = exp(n/5)

(2)选做题

 Ⅰ.第一小题

  求解:
▲ sinc函数连续乘积信号

▲ sinc函数连续乘积信号

t = linspace(-15, 15, 1000)
ft = sinc(t/pi)*sinc(t/3/pi)*sinc(t/5/pi)

注:在Python中,sinc(x)定义为 sin ⁡ c ( x ) = sin ⁡ ( π x ) / ( π ⋅ x ) \sin c\left( x \right) = \sin \left( {\pi x} \right)/\left( {\pi \cdot x} \right) sinc(x)=sin(πx)/(πx) ,所以在应用时使用 sin ⁡ c ( x / π ) \sin c\left( {x/\pi } \right) sinc(x/π)

 Ⅱ.第二小题

  求解:
▲ 震荡序列

▲ 震荡序列

n=arange(-10, 10)
fn=sin(pi*n*n/3)
plt.stem(n, fn)
 Ⅲ.第三小题

  求解:
▲ 非周期振荡信号

▲ 非周期振荡信号

t = linspace(0.00001, 10, 10000)
ft = sin(2*pi/t)
 Ⅳ.第四小题

  求解:
▲ 周期波形发散信号

▲ 周期波形发散信号

def f0(t):
    out = 1/t*(heaviside(t,0)-heaviside(t-1,0))
    return out

t = linspace(-3,3,12349)
ft = f0(t-3)+f0(t-2)+f0(t-1)+f0(t)+f0(t+1)+f0(t+2)+f0(t+3)

1.2 写出信号函数表达式

(1)必做题

 Ⅰ.第一小题

  求解:

  • 第一种表达式:
    f ( t ) = { 0 ,                             x < − 1 2 x + 2 ,              − 1 ≤ x < 0 − 2 x + 2 ,               0 ≤ x < 1 0 ,                             x > = 1 f\left( t \right) = \left\{ \begin{matrix} {0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x < - 1}\\{2x + 2,\,\,\,\,\,\,\,\,\,\,\,\, - 1 \le x < 0}\\{ - 2x + 2,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \le x < 1}\\{0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x > = 1}\\\end{matrix} \right. f(t)=0,x<12x+2,1x<02x+2,0x<10,x>=1

  • 第二种表达式:

    f ( t ) = ( 2 − 2 ∣ t ∣ ) ⋅ [ u ( t + 1 ) − u ( t − 1 ) ] f\left( t \right) = \left( {2 - 2\left| t \right|} \right) \cdot \left[ {u\left( {t + 1} \right) - u\left( {t - 1} \right)} \right] f(t)=(22t)[u(t+1)u(t1)]

 Ⅱ.第二小题
  • 第一种表达式:
    f ( t ) = [ u ( t ) − u ( t − 1 ) ] + 1.5 [ u ( t − 1 ) − u ( t − 3 ) ] f\left( t \right) = \left[ {u\left( t \right) - u\left( {t - 1} \right)} \right] + 1.5\left[ {u\left( {t - 1} \right) - u\left( {t - 3} \right)} \right] f(t)=[u(t)u(t1)]+1.5[u(t1)u(t3)] + 3 [ u ( t − 3 ) − u ( t − 4.5 ) ] + 0.5 u ( t − 4.5 ) + 3\left[ {u\left( {t - 3} \right) - u\left( {t - 4.5} \right)} \right] + 0.5u\left( {t - 4.5} \right) +3[u(t3)u(t4.5)]+0.5u(t4.5)

  • 第二种表达式:
    f ( t ) = u ( t ) + 0.5 u ( t − 1 ) + 1.5 u ( t − 3 ) − 2.5 u ( t − 4.5 ) f\left( t \right) = u\left( t \right) + 0.5u\left( {t - 1} \right) + 1.5u\left( {t - 3} \right) - 2.5u\left( {t - 4.5} \right) f(t)=u(t)+0.5u(t1)+1.5u(t3)2.5u(t4.5)

 Ⅲ.第三小题

  求解:

f ( t ) = E 2 cos ⁡ ( π T t ) ⋅ [ u ( t + T ) − u ( t − T ) ] + E 2 f\left( t \right) = {E \over 2}\cos \left( { {\pi \over T}t} \right) \cdot \left[ {u\left( {t + T} \right) - u\left( {t - T} \right)} \right] + {E \over 2} f(t)=2Ecos(Tπt)[u(t+T)u(tT)]+2E

 Ⅳ.第四小题

  求解:

f ( t ) = − E sin ⁡ ( t ) ⋅ u ( t ) f\left( t \right) = - E\sin \left( t \right) \cdot u\left( t \right) f(t)=Esin(t)u(t)

 Ⅴ.第五小题

  求解:

f ( t ) = e − 0.1 t ⋅ sin ⁡ ( t ) ⋅ u ( t ) f\left( t \right) = e^{ - 0.1t} \cdot \sin \left( t \right) \cdot u\left( t \right) f(t)=e0.1tsin(t)u(t)

(2)选做题

 Ⅰ.第一小题

  求解:

  • 第一种表达式:

    f ( t ) = 2 ∑ n = − ∞ + ∞ ( − 1 ) n [ u ( t + 1 − 4 n ) − u ( t − 1 − 4 n ) ] f\left( t \right) = 2\sum\limits_{n = - \infty }^{ + \infty } {\left( { - 1} \right)^n \left[ {u\left( {t + 1 - 4n} \right) - u\left( {t - 1 - 4n} \right)} \right]} f(t)=2n=+(1)n[u(t+14n)u(t14n)]

  • 第二种表达式:

    f ( t ) = 2 s g n [ cos ⁡ ( π 2 t ) ] f\left( t \right) = 2{\mathop{\rm sgn}} \left[ {\cos \left( { {\pi \over 2}t} \right)} \right] f(t)=2sgn[cos(2πt)] 其中 s g n ( t ) = { 1 ,        t > 0 0 ,       t = 0 − 1 ,       t < 0 {\mathop{\rm sgn}} \left( t \right) = \left\{ \begin{matrix} {1,\,\,\,\,\,\,t > 0}\\{0,\,\,\,\,\,t = 0}\\{ - 1,\,\,\,\,\,t < 0}\\\end{matrix} \right. sgn(t)=1,t>00,t=01,t<0

 Ⅱ.第二小题

f ( t ) = ∑ n = 0 + ∞ 2 − n [ u ( t − 1 + 2 − n ) − u ( t − 1 + 2 − n − 1 ) ] f\left( t \right) = \sum\limits_{n = 0}^{ + \infty } {2^{ - n} \left[ {u\left( {t - 1 + 2^{ - n} } \right) - u\left( {t - 1 + 2^{ - n - 1} } \right)} \right]} f(t)=n=0+2n[u(t1+2n)u(t1+2n1)]

▲ 图1.2.2 使用程序绘制公式波形进行验证

▲ 图1.2.2 使用程序绘制公式波形进行验证

from headm import *

t = linspace(-0.25,1.25,10000)

ft = t*0

for n in range(100):
    ft = ft + 0.5**n*(heaviside(t-1+0.5**n,0)-heaviside(t-1+0.5**(n+1),0))

plt.plot(t,ft)
plt.xlabel("t")
plt.ylabel("f(t)")
plt.grid(True)
plt.tight_layout()
plt.show()

1.3 判断信号的周期性

(1)必做题

 Ⅰ.第一小题

  求解: 非周期

f ( t ) = sin ⁡ ( 10 t ) − cos ⁡ ( 30 π t ) f\left( t \right) = \sin \left( {10t} \right) - \cos \left( {30\pi t} \right) f(t)=sin(10t)cos(30πt)
▲ 图1.3.1 f(t)的波形

▲ 图1.3.1 f(t)的波形

 Ⅱ.第二小题

  求解: 周期信号

 Ⅲ.第三小题

  求解: 周期信号

 Ⅳ.第四小题

  求解: 周期信号

 Ⅴ.第五小题

  求解: 非周期信号

▲ 图1.3.2 信号的波形

▲ 图1.3.2 信号的波形

 Ⅵ.第六小题

  求解: 周期信号

▲ 序列的波形

▲ 序列的波形

n = arange(-30, 30)
fn = cos(pi*(n*n*n)/5)
plt.stem(n,fn)

plt.xlabel("n")
plt.ylabel("f[n]")
plt.grid(True)
plt.tight_layout()
plt.show()

(2)选做题

 Ⅰ.第一小题

  求解: 非周期信号

▲ 序列的波形

▲ 序列的波形

 Ⅱ.第二小题

  求解

  (1) 如果 y [ n ] y\left[ n \right] y[n] 是周期信号, x [ n ] x\left[ n \right] x[n] 不一定是周期信号;

  (2) x [ n ] x\left[ n \right] x[n] 是周期信号, y [ n ] y\left[ n \right] y[n] 一定是周期信号;

1.4 冲激信号的抽样特性

 Ⅰ.第一小题

∫ − ∞ ∞ f ( τ ) δ ( τ 2 ) d τ = ∫ − ∞ + ∞ f ( τ ) ⋅ 2 δ ( τ ) d τ = 2 f ( 0 ) \int_{ - \infty }^\infty {f\left( \tau \right)\delta \left( { {\tau \over 2}} \right)d\tau } = \int_{ - \infty }^{ + \infty } {f\left( \tau \right) \cdot 2\delta \left( \tau \right)d\tau } = 2f\left( 0 \right) f(τ)δ(2τ)dτ=+f(τ)2δ(τ)dτ=2f(0)

 Ⅱ.第二小题

∫ − ∞ + ∞ cos ⁡ ( 2 τ ) ⋅ δ ( τ − π 3 ) d τ = cos ⁡ ( 2 ⋅ π 3 ) = − 1 2 \int_{ - \infty }^{ + \infty } {\cos \left( {2\tau } \right) \cdot \delta \left( {\tau - {\pi \over 3}} \right)d\tau } = \cos \left( {2 \cdot {\pi \over 3}} \right) = - {1 \over 2} +cos(2τ)δ(τ3π)dτ=cos(23π)=21

 Ⅲ.第三小题

∫ − ∞ + ∞ δ ( t − t 0 ) ⋅ u ( t − t 0 3 ) d t = u ( t 0 − t 0 3 ) = u ( 2 t 0 3 ) = { 1 ,      t 0 > 0 0.5 ,     t 0 = 0 − 1 ,      t 0 < 0 \int_{ - \infty }^{ + \infty } {\delta \left( {t - t_0 } \right) \cdot u\left( {t - { {t_0 } \over 3}} \right)dt} = u\left( {t_0 - { {t_0 } \over 3}} \right) = u\left( { { {2t_0 } \over 3}} \right) = \left\{ \begin{matrix} {1,\,\,\,\,t_0 > 0}\\{0.5,\,\,\,t_0 = 0}\\{ - 1,\,\,\,\,t_0 < 0}\\\end{matrix} \right. +δ(tt0)u(t3t0)dt=u(t03t0)=u(32t0)=1,t0>00.5,t0=01,t0<0

 Ⅳ.第四小题

∫ − ∞ + ∞ [ 2 e − t + cos ⁡ 2 t ] ⋅ δ ′ ( t ) d t = [ 2 e − t + cos ⁡ 2 t ] ′ ∣ t = 0 = − 2 e − t − 2 sin ⁡ 2 t ∣ t = 0 = − 2 \int_{ - \infty }^{ + \infty } {\left[ {2e^{ - t} + \cos 2t} \right] \cdot \delta '\left( t \right)dt} = \left. {\left[ {2e^{ - t} + \cos 2t} \right]^\prime } \right|_{t = 0} = \left. { - 2e^{ - t} - 2\sin 2t} \right|_{t = 0} = - 2 +[2et+cos2t]δ(t)dt=[2et+cos2t]t=0=2et2sin2tt=0=2

 Ⅴ.第五小题

∫ − ∞ + ∞ e − j ω t [ δ ( t ) + δ ( t − t 0 ) ] d t = e − j ω ⋅ 0 + e − j ω ⋅ t 0 = 1 + e − j ω t 0 \int_{ - \infty }^{ + \infty } {e^{ - j\omega t} \left[ {\delta \left( t \right) + \delta \left( {t - t_0 } \right)} \right]dt} = e^{ - j\omega \cdot 0} + e^{ - j\omega \cdot t_0 } = 1 + e^{ - j\omega t_0 } +ejωt[δ(t)+δ(tt0)]dt=ejω0+ejωt0=1+ejωt0

 Ⅵ.第六小题

∫ − ∞ + ∞ e − τ [ δ ( τ − 1 ) + δ ′ ( τ ) ] d τ = e − 1 + ( e − t ) ′ ∣ t = 0 = e − 1 − 1 \int_{ - \infty }^{ + \infty } {e^{ - \tau } \left[ {\delta \left( {\tau - 1} \right) + \delta '\left( \tau \right)} \right]d\tau } = e^{ - 1} + \left. {\left( {e^{ - t} } \right)^\prime } \right|_{t = 0} = e^{ - 1} - 1 +eτ[δ(τ1)+δ(τ)]dτ=e1+(et)t=0=e11

1.5 信号的直流分量

 Ⅰ.第一小题

  求解:
f D ( t ) = ω π ∫ 0 π ω sin ⁡ ( ω t ) d t = ω π ⋅ ( − 1 ) 1 ω cos ⁡ ( ω t ) ∣ t = 0 t = π ω = 2 π f_D \left( t \right) = {\omega \over \pi }\int_0^{ {\pi \over \omega }} {\sin \left( {\omega t} \right)dt} = {\omega \over \pi } \cdot \left. {\left( { - 1} \right){1 \over \omega }\cos \left( {\omega t} \right)} \right|_{t = 0}^{t = {\pi \over \omega }} = {2 \over \pi } fD(t)=πω0ωπsin(ωt)dt=πω(1)ω1cos(ωt)t=0t=ωπ=π2

 Ⅱ.第二小题

  求解: 因为:
cos ⁡ ( 2 ω t ) = cos ⁡ 2 ( ω t ) − sin ⁡ 2 ( ω t ) = 1 − 2 sin ⁡ 2 ( ω t ) \cos \left( {2\omega t} \right) = \cos ^2 \left( {\omega t} \right) - \sin ^2 \left( {\omega t} \right) = 1 - 2\sin ^2 \left( {\omega t} \right) cos(2ωt)=cos2(ωt)sin2(ωt)=12sin2(ωt) sin ⁡ 2 ( ω t ) = 1 2 [ 1 − cos ⁡ ( 2 ω t ) ] \sin ^2 \left( {\omega t} \right) = {1 \over 2}\left[ {1 - \cos \left( {2\omega t} \right)} \right] sin2(ωt)=21[1cos(2ωt)]

  所以: f D ( t ) = 1 2 f_D \left( t \right) = {1 \over 2} fD(t)=21

 Ⅲ.第三小题

  求解: f D ( t ) = 0 f_D \left( t \right) = 0 fD(t)=0

 Ⅳ.第四小题

  求解: f D ( t ) = K f_D \left( t \right) = K fD(t)=K


■ 相关文献链接:

● 相关图表链接:

猜你喜欢

转载自blog.csdn.net/zhuoqingjoking97298/article/details/124272082
今日推荐