2020年春季学期信号与系统课程作业参考答案-第十二次作业

信号与系统第十二次作业参考答案
 

※ 第一题


利用Laplace变换求解下列微分方程:
(1) d 2 d t 2 y ( t ) + 2 d d t y ( t ) + y ( t ) = δ ( t ) + 2 δ ( t ) {{d^2 } \over {dt^2 }}y\left( t \right) + 2{d \over {dt}}y\left( t \right) + y\left( t \right) = \delta \left( t \right) + 2\delta '\left( t \right)
y ( 0 ) = 1 ,     y ( 0 ) = 2 y\left( {0_ - } \right) = 1,\,\,\,y'\left( {0_ - } \right) = 2
(2) d 2 d t 2 y ( t ) + 5 d d t y ( t ) + 6 y ( t ) = 3 x ( t ) {{d^2 } \over {dt^2 }}y\left( t \right) + 5{d \over {dt}}y\left( t \right) + 6y\left( t \right) = 3x\left( t \right)
x ( t ) = e t u ( t ) ,     y ( 0 ) = 0 ,    y ( 0 ) = 1 x\left( t \right) = e^{ - t} u\left( t \right),\,\,\,y\left( {0_ - } \right) = 0,\,\,y'\left( {0_ - } \right) = 1


■ 求解:

(1)解答: 对微分方程两边进行Laplace变换,根据Laplace变换的微分定理,可将系统的初始条件代入方程:
s 2 Y ( s ) s y ( 0 ) y ( 0 ) + 2 [ s Y ( s ) y ( 0 ) ] + Y ( s ) = 1 + 2 s s^2 Y\left( s \right) - sy\left( {0_ - } \right) - y'\left( {0_ - } \right) + 2\left[ {sY\left( s \right) - y\left( {0_ - } \right)} \right] + Y\left( s \right) = 1 + 2s

s 2 Y ( s ) s 2 + 2 [ s Y ( s ) 1 ] + Y ( s ) = 1 + 2 s s^2 Y\left( s \right) - s - 2 + 2\left[ {sY\left( s \right) - 1} \right] + Y\left( s \right) = 1 + 2s

( s 2 + 2 s + 1 ) Y ( s ) = 3 s + 5 \left( {s^2 + 2s + 1} \right)Y\left( s \right) = 3s + 5

Y ( s ) = 5 + 3 s s 2 + 2 s + 1 Y\left( s \right) = {{5 + 3s} \over {s^2 + 2s + 1}}

>>ilaplace((3*s+5)/(s*s+2*s+1))'
ans=3*exp(-t)+2*t*exp(-t)

y ( t ) = 3 e t + 2 t e t ,      t 0 y\left( t \right) = 3e^{ - t} + 2t \cdot e^{ - t} ,\,\,\,\,t \ge 0

(2)解答: 对微分方程两边进行Laplace变换,根据Laplace变换的微分定理,可将系统的初始条件代入方程:

s 2 Y ( s ) s y ( 0 ) y ( 0 ) + 5 [ s Y ( s ) y ( 0 ) ] + 6 Y ( s ) = 3 X ( s ) s^2 Y\left( s \right) - sy\left( {0_ - } \right) - y'\left( {0_{\rm{ - }} } \right) + 5\left[ {sY\left( s \right) - y\left( {0_ - } \right)} \right] + 6Y\left( s \right) = 3X\left( s \right)

X ( s ) = 1 s + 1 X\left( s \right) = {1 \over {s + 1}}

( s 2 + 5 s + 6 ) Y ( s ) = 1 s + 1 + 1 \left( {s^2 + 5s + 6} \right)Y\left( s \right) = {1 \over {s + 1}} + 1

Y ( s ) = s + 2 ( s + 1 ) ( s 2 + 5 s + 6 ) Y\left( s \right) = {{s + 2} \over {\left( {s + 1} \right)\left( {s^2 + 5s + 6} \right)}}

>>ilaplace((s+2)/((s+1)*(s*s+5*s+6)))'
ans=exp(-t)/2 -exp(-3*t)/2

y ( t ) = 1 2 e t 1 2 e 3 t ,      t 0 y\left( t \right) = {1 \over 2}e^{ - t} - {1 \over 2}e^{ - 3t} ,\,\,\,\,t \ge 0

※ 第二题


利用单边z变换求解下列差分方程,并求出零输入响应和零状态响应。
(1) y [ n ] + 3 y [ n 1 ] = x [ n ] ,    x [ n ] = ( 1 2 ) n u [ n ] ,    y [ 1 ] = 1 y\left[ n \right] + 3y\left[ {n - 1} \right] = x\left[ n \right],\,\,x\left[ n \right] = \left( {{1 \over 2}} \right)^n \cdot u\left[ n \right],\,\,y\left[ { - 1} \right] = 1
(2) y [ n ] 1 2 y [ n 1 ] = x [ n ] 1 2 x [ n 1 ] ,    x [ n ] = u [ n ] ,      y [ 1 ] = 1 y\left[ n \right] - {1 \over 2}y\left[ {n - 1} \right] = x\left[ n \right] - {1 \over 2}x\left[ {n - 1} \right],\,\,x\left[ n \right] = u\left[ n \right],\,\,\,\,y\left[ { - 1} \right] = 1


■ 求解:

(1)解答: 方程两边同时进行z变换:
Y ( z ) + 3 z 1 Y ( z ) + 3 y [ 1 ] = X ( z ) Y\left( z \right) + 3z^{ - 1} Y\left( z \right) + 3 \cdot y\left[ { - 1} \right] = X\left( z \right) ( 1 + 3 z 1 ) Y ( z ) = z z 1 2 3 \left( {1 + 3z^{ - 1} } \right)Y\left( z \right) = {z \over {z - {1 \over 2}}} - 3 Y ( z ) = z ( 2 z + 3 2 ) ( z 1 2 ) ( z + 3 ) = 1 7 z z 1 2 + 15 7 z z + 3 Y\left( z \right) = {{z\left( { - 2z + {3 \over 2}} \right)} \over {\left( {z - {1 \over 2}} \right)\left( {z + 3} \right)}} = {{{1 \over 7}z} \over {z - {1 \over 2}}} + {{ - {{15} \over 7}z} \over {z + 3}}
y [ n ] = 1 7 ( 1 2 ) n u [ n ] 15 7 ( 3 ) n u [ n ] y\left[ n \right] = {1 \over 7}\left( {{1 \over 2}} \right)^n u\left[ n \right] - {{15} \over 7}\left( { - 3} \right)^n u\left[ n \right]

零输入响应:
Y z i ( z ) = 3 1 + 3 z 1 = 3 z z + 3 Y_{zi} \left( z \right) = {{ - 3} \over {1 + 3z^{ - 1} }} = {{ - 3z} \over {z + 3}} y z i [ n ] = 3 ( 3 ) n u [ n ] = ( 3 ) n + 1 u [ n ] y_{zi} \left[ n \right] = - 3\left( { - 3} \right)^n \cdot u\left[ n \right] = \left( { - 3} \right)^{n + 1} u\left[ n \right]

零状态响应:
Y z s ( z ) = z 2 ( z 1 2 ) ( z + 3 ) = 1 7 z z 1 2 + 6 7 z z + 3 Y_{zs} \left( z \right) = {{z^2 } \over {\left( {z - {1 \over 2}} \right)\left( {z + 3} \right)}} = {{{1 \over 7}z} \over {z - {1 \over 2}}} + {{{6 \over 7}z} \over {z + 3}} y z s [ n ] = 1 7 ( 1 2 ) n u [ n ] + 6 7 ( 3 ) n u [ n ] y_{zs} \left[ n \right] = {1 \over 7}\left( {{1 \over 2}} \right)^n u\left[ n \right] + {6 \over 7}\left( { - 3} \right)^n u\left[ n \right]

(2)解答: 方程两边同时进行z变换:
Y ( z ) 1 2 z 1 Y ( z ) 1 2 y [ 1 ] = ( 1 1 2 z 1 ) z z 1 Y\left( z \right) - {1 \over 2}z^{ - 1} Y\left( z \right) - {1 \over 2}y\left[ { - 1} \right] = \left( {1 - {1 \over 2}z^{ - 1} } \right) \cdot {z \over {z - 1}} Y ( z ) = z ( 3 2 z 1 ) ( z 1 ) ( z 1 2 ) = z z 1 + 1 2 z 1 2 Y\left( z \right) = {{z\left( {{3 \over 2}z - 1} \right)} \over {\left( {z - 1} \right)\left( {z - {1 \over 2}} \right)}} = {z \over {z - 1}} + {{{1 \over 2}} \over {z - {1 \over 2}}} y [ n ] = u [ n ] + ( 1 2 ) n + 2 u [ n ] y\left[ n \right] = u\left[ n \right] + \left( {{1 \over 2}} \right)^{n + 2} u\left[ n \right]

系统的零输入响应为:
Y z i ( z ) = 1 2 z z 1 2 Y_{zi} \left( z \right) = {{{1 \over 2}z} \over {z - {1 \over 2}}} y z i [ n ] = ( 1 2 ) n + 1 u [ n ] y_{zi} \left[ n \right] = \left( {{1 \over 2}} \right)^{n + 1} u\left[ n \right]

系统的零状态响应为:
Y z s ( z ) = z z 1 Y_{zs} \left( z \right) = {z \over {z - 1}} y z s [ n ] = u [ n ] y_{zs} \left[ n \right] = u\left[ n \right]

※ 第三题


设激励 x ( t ) = e t x\left( t \right) = e^{ - t} 时,系统的零状态响应为: y ( t ) = 1 2 e t e 2 t + 2 e 3 t            y\left( t \right) = {1 \over 2}e^{ - t} - e^{ - 2t} + 2e^{ - 3t} \;\;\;\;\;
求系统的单位脉冲响应信号 h ( t ) h\left( t \right)


■ 求解:

分别对输入信号 x ( t ) x\left( t \right) 和系统的零状态响应 y ( t ) y\left( t \right) 进行Laplace变换:
X ( s ) = L T [ e t u ( t ) ] = 1 s + 1 X\left( s \right) = LT\left[ {e^{ - t} \cdot u\left( t \right)} \right] = {1 \over {s + 1}}

Y ( s ) = L T [ 1 2 e t e 2 t + 2 e 3 t ] = 1 2 1 s + 1 1 s + 2 + 2 s + 3 Y\left( s \right) = LT\left[ {{1 \over 2}e^{ - t} - e^{ - 2t} + 2e^{ - 3t} } \right] = {1 \over 2}{1 \over {s + 1}} - {1 \over {s + 2}} + {2 \over {s + 3}}

= 3 2 s 2 + 9 2 s + 4 ( s + 1 ) ( s + 2 ) ( s + 3 ) = {{{3 \over 2}s^2 + {9 \over 2}s + 4} \over {\left( {s + 1} \right)\left( {s + 2} \right)\left( {s + 3} \right)}}

根据线性是不变系统的性质,系统的零状态输出等于系统的输入信号与系统的单位冲击响应信号的卷积: y ( t ) = x ( t ) h ( t ) y\left( t \right) = x\left( t \right) * h\left( t \right)

根据Laplace变换的卷积定理: Y ( s ) = X ( s ) H ( s ) Y\left( s \right) = X\left( s \right) \cdot H\left( s \right)

因此: H ( s ) = Y ( s ) X ( s ) = 3 2 s 2 + 9 2 s + 4 ( s + 1 ) 2 ( s + 2 ) ( s + 3 ) H\left( s \right) = {{Y\left( s \right)} \over {X\left( s \right)}} = {{{3 \over 2}s^2 + {9 \over 2}s + 4} \over {\left( {s + 1} \right)^2 \left( {s + 2} \right)\left( {s + 3} \right)}}

>>ilaplace((1.5*s*s+4.5*s+4)/((s+1)^2*(s+2)*(s+3)))'
ans=exp(-2*t)-exp(-3*t)+(t*exp(-t))/2

则系统的单位冲击响应信号 h ( t ) h\left( t \right) 等于: h ( t ) = e 2 t e 3 t + 1 2 t e t ,      t 0 h\left( t \right) = e^{ - 2t} - e^{ - 3t} + {1 \over 2}t \cdot e^{ - t} ,\,\,\,\,t \ge 0

※ 第四题


画出 X ( z ) = 3 z 1 1 4 z 1 + 3 z 2 X\left( z \right) = {{ - 3z^{ - 1} } \over {1 - 4z^{ - 1} + 3z^{ - 2} }}
的零极点图,在下列三种收敛域的情况下,求出各自对应的序列:
(1) z > 3 \left| z \right| > 3
(2) z < 1 \left| z \right| < 1
(3) 1 < z < 3 1 < \left| z \right| < 3


■ 求解:

X ( z ) = 3 z z 2 4 z + 3 = 3 z ( z 1 ) ( z 3 ) = 3 2 z z 1 + 3 2 z z 3 X\left( z \right) = {{ - 3z} \over {z^2 - 4z + 3}} = {{ - 3z} \over {\left( {z - 1} \right)\left( {z - 3} \right)}} = {{{3 \over 2}z} \over {z - 1}} + {{{{ - 3} \over 2}z} \over {z - 3}}

(1) x [ n ] = 3 2 u [ n ] 3 2 3 n u [ n ] x\left[ n \right] = {3 \over 2}u\left[ n \right] - {3 \over 2}3^n \cdot u\left[ n \right]

(2) x [ n ] = 3 2 u [ n 1 ] + 3 2 3 n u [ n 1 ] x\left[ n \right] = - {3 \over 2}u\left[ { - n - 1} \right] + {3 \over 2}3^n \cdot u\left[ { - n - 1} \right]

(3) x [ n ] = 3 2 u [ n ] + 3 2 3 n u [ n 1 ] x\left[ n \right] = {3 \over 2}u\left[ n \right] + {3 \over 2}3^n \cdot u\left[ { - n - 1} \right]

※ 第五题


给定实数序列 x [ n ] x\left[ n \right] 及其z变换的表达式 X ( z ) X\left( z \right) 。请证明: X ( z ) = X ( z ) X\left( z \right) = X^* \left( {z^* } \right)


■ 证明:

X ( z ) = n = x [ n ] z n X\left( z \right) = \sum\limits_{n = - \infty }^\infty {x\left[ n \right] \cdot z^{ - n} }

X ( z ) = n = x [ n ] ( z ) n = ( n = x [ n ] z n ) = X ( z ) X\left( {z^* } \right) = \sum\limits_{n = - \infty }^\infty {x\left[ n \right] \cdot \left( {z^* } \right)^{ - n} } \, = \left( {\sum\limits_{n = - \infty }^\infty {x\left[ n \right] \cdot z^{ - n} } } \right)^* \, = X^* \left( z \right)

两边再取共轭,原题得证。

※ 第六题


已知: X ( z ) = ln ( 1 + a z ) ,            ( z > a ) X\left( z \right) = \ln \left( {1 + {a \over z}} \right),\,\,\,\,\,\,\,\,\,\,\left( {\left| z \right| > \left| a \right|} \right)
求对应的序列 x [ n ] x\left[ n \right]


■ 求解:

方法1:
X ( z ) = n = 0 x [ n ] z n X\left( z \right) = \sum\limits_{n = 0}^\infty {x\left[ n \right]z^{ - n} } X ( z ) = n = 0 ( n ) x [ n ] z n 1 X'\left( z \right) = \sum\limits_{n = 0}^\infty {\left( { - n} \right)x\left[ n \right]z^{ - n - 1} } z X ( z ) = n = 0 { n x [ n ] } z n z \cdot X'\left( z \right) = \sum\limits_{n = 0}^\infty {\left\{ { - n \cdot x\left[ n \right]} \right\}z^{ - n} } n x [ n ] = Z T 1 [ z X ( z ) ] - n \cdot x\left[ n \right] = ZT^{ - 1} \left[ {z \cdot X'\left( z \right)} \right] x [ n ] = 1 n Z T 1 [ z X ( z ) ] x\left[ n \right] = {1 \over { - n}} \cdot ZT^{ - 1} \left[ {z \cdot X'\left( z \right)} \right]
d d z X ( z ) = d d z ln ( z + a z ) = z z + a d d z ( z + a z ) {d \over {dz}}X\left( z \right) = {d \over {dz}}\ln \left( {{{z + a} \over z}} \right) = {z \over {z + a}} \cdot {d \over {dz}}\left( {{{z + a} \over z}} \right) = z z + a z ( z + a ) z 2 = a z ( z + a ) = {z \over {z + a}} \cdot {{z - \left( {z + a} \right)} \over {z^2 }} = {{ - a} \over {z\left( {z + a} \right)}}
z d d z X ( z ) = a z z ( z + a ) = a z + a z \cdot {d \over {dz}}X\left( z \right) = {{ - az} \over {z\left( {z + a} \right)}} = {{ - a} \over {z + a}}
Z T 1 [ z X ( z ) ] = ( a ) n u [ n 1 ] ZT^{ - 1} \left[ {z \cdot X'\left( z \right)} \right] = \left( { - a} \right)^n \cdot u\left[ {n - 1} \right]
x [ n ] = ( a ) n n u [ n 1 ] x\left[ n \right] = {{\left( { - a} \right)^n } \over { - n}} \cdot u\left[ {n - 1} \right]

>>iztrans(log(1+a/z))'
ans=((-1)^(n-1)*a^n*(heaviside(n-1)+kroneckerDelta(n-1,0)/2))/n

方法2:
利用对数进行Taylor展开:

>>taylor(log(1-x),'Order',10)'
ans=-x^9/9 -x^8/8 -x^7/7 -x^6/6 -x^5/5 -x^4/4 -x^3/3 -x^2/2 -x

ln ( 1 x ) = x x 2 2 x 3 3 x 4 4 . . . . = n = 1 x n n \ln \left( {1 - x} \right) = - x - {{x^2 } \over 2} - {{x^3 } \over 3} - {{x^4 } \over 4} - .... = \sum\limits_{n = 1}^\infty { - {{x^n } \over n}}
ln ( 1 1 z ) = n = 1 z n n \ln \left( {1 - {1 \over z}} \right) = \sum\limits_{n = 1}^\infty { - {{z^{ - n} } \over n}}

猜你喜欢

转载自blog.csdn.net/zhuoqingjoking97298/article/details/106456493