12. 连续型随机变量及其概率密度

连续型随机变量及其概率密度

定义: 对于随机变量 X X 的分布函数 F ( x ) F(x) ,若存在非负的函数 f ( x ) f(x) ,使对于任意实数 x x 有:

F ( x ) = x f ( t ) d t F(x)=\int_{-\infty}^{x} f(t) \, {\rm d}t

则称 X X 为连续型随机变量,其中 f ( x ) f(x) 称为 X X 概率密度函数,检测概率密度。


f ( x ) f(x) 的性质:

(1) f ( x ) 0 ; f(x)\geq 0;

(2) + f ( x ) d x = 1 ; \int_{-\infty}^{+\infty} f(x) \, {\rm d}x=1;

F ( + ) = 1 \quad \quad \because F(+\infty)=1

(3) 对于任意的实数 x 1 , x 2 ( x 1 x 2 ) x_1,x_2 \,(x_1\leq x_2)

P ( x 1 < X x 2 ) = x 1 x 2 f ( t ) d t ; \quad P(x_1<X\leq x_2)=\int_{x_1}^{x_2} f(t) \, {\rm d}t;

L H S = P ( X x 2 ) P ( X x 1 ) = F ( x 2 ) F ( x 1 ) = x 2 f ( t ) d t x 1 f ( t ) d t \quad \because LHS = P(X\leq x_2)-P(X\leq x_1) = F(x_2)-F(x_1) = \int_{-\infty}^{x_2} f(t) \, {\rm d}t - \int_{-\infty}^{x_1} f(t) \, {\rm d}t

      \implies 对任意的实数 a a P ( X = a ) = 0. P(X=a) = 0. P ( x 1 < X x 2 ) = P ( x 1 < X < x 2 ) P(x_1<X\leq x_2) = P(x_1<X<x_2)

对于连续型的随机变量 X X ,有

P ( X D ) = D f ( x ) d x D R . P(X\in D) = \int_D f(x) \, {\rm d}x,任意 D \subset R.

(4)在 f ( x ) f(x) 连续点 x x F ( x ) = f ( x ) . F'(x) = f(x).

即在 f ( x ) f(x) 的连续点

f ( x ) = F ( x ) = lim Δ x 0 F ( x + Δ x ) F ( x ) Δ x = lim Δ x 0 P ( x < X x + Δ x ) Δ x f(x) = F'(x) = \lim_{\Delta x \to 0} \frac{F(x+\Delta x)-F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{P(x<X\leq x+\Delta x)}{\Delta x}

P ( x < X x + Δ x ) f ( x ) Δ x P(x<X\leq x+\Delta x) \approx f(x)·\Delta x

这表示 X X 落在点 x x 附近 ( x , x + Δ x ] (x, x+\Delta x] 的概率近似等于 f ( x ) Δ x f(x)\Delta x


说明:

(1) f ( x ) f(x) 值的含义;

\quad \quad Δ x \Delta x 充分小时,

\quad \quad P ( x < X x + Δ x ) f ( x ) Δ x P(x<X\leq x+\Delta x) \approx f(x)·\Delta x

(2) f ( x ) 1 f(x) 的值是可以大于 1的;

(3)

f ( x ) x f ( t ) d t F ( x ) f(x) \quad \underrightarrow{\int_{-\infty}^x f(t) \, {\rm d}t} \quad F(x)

F ( x ) d d x F ( x ) f ( x ) F(x) \quad \underleftarrow{\frac{d}{dx}F(x)} \quad f(x)


例 1: X X 的概率密度为

f ( x ) = { c x + 1 / 6 , 0 < x < 2 ; 0 , 其他. f(x)=\begin{cases} cx+1/6, & 0<x<2; \\ 0, & \text{其他.} \end{cases}

求:(1)常数 c c 的值;(2) X X 的概率分布函数 F ( x ) F(x) ;(3) P ( 1 < X < 1 ) P(-1<X<1) 的值。

解 :

(1)

1 = + f ( x ) d x = 0 f ( x ) d x + 0 2 f ( x ) d x + 2 + f ( x ) d x = 0 0 d x + 0 2 ( c x + 1 6 ) d x + 2 + 0 d x = 0 2 ( c x + 1 6 ) d x = ( c 2 x 2 + 1 6 x ) 0 2 = c 2 × 2 2 + 1 6 × 2       c = 1 3 . \begin{aligned} 1 &= \int_{-\infty}^{+\infty} f(x) \, {\rm d}x = \int_{-\infty}^{0} f(x) \, {\rm d}x + \int_0^2 f(x) \, {\rm d}x + \int_2^{+\infty} f(x) \, {\rm d}x \\ &= \int_{-\infty}^0 0 \, {\rm d}x + \int_0^2 (cx+\frac{1}{6}) \, {\rm d}x + \int_2^{+\infty} 0 \, {\rm d}x = \int_0^2 (cx+\frac{1}{6}) \, {\rm d}x = \left. (\frac{c}{2}x^2 + \frac{1}{6}x) \right| _{0}^{2} \\ &= \frac{c}{2} \times 2^2 + \frac{1}{6} \times 2 \implies c = \frac{1}{3}. \end{aligned}

(2)
f ( x ) = { x / 3 + 1 / 6 , 0 < x < 2 ; 0 , 其他. f(x)= \begin{cases} x/3+1/6, & 0<x<2; \\ 0, & \text{其他.} \end{cases}

F ( x ) = P { X x } = x f ( t ) d t F(x)=P\{X\leq x\}=\int_{-\infty}^x f(t) \, {\rm d}t

由第 1 问可知, 0 2 ( c x + 1 6 ) d x = 1 \int_0^2 (cx+\cfrac{1}{6}) \, {\rm d}x=1 ,等价于 P { X ( 0 , 2 } = 1 P\{X\in (0,2\}=1

a. 当 x < 0 x<0 时, F ( x ) = P { X x } = x 0 d t = 0 F(x)=P\{X\leq x\}=\int_{-\infty}^x 0 \, {\rm d}t = 0 ;

b. 当 x 2 x\geq 2 时, ( 0 , 2 ) ( , x ] (0,2)\subset (-\infty, x] ,故 F ( x ) = P { X x } = 1 F(x)=P\{X\leq x\}=1 ;

c. 当 0 x < 2 0\leq x<2

F ( x ) = P { X x } = x f ( t ) d t = 0 f ( t ) d t + 0 x f ( t ) d t = 0 0 d t + 0 x ( t 3 + 1 6 ) d t = ( t 2 6 + t 6 ) 0 x = x 2 6 + x 6 \begin{aligned} F(x) &= P\{X\leq x\} = \int_{-\infty}^x f(t) \, {\rm d}t = \int_{-\infty}^0 f(t) \, {\rm d}t + \int_0^x f(t) \, {\rm d}t \\ &= \int_{-\infty}^0 0 \, {\rm d}t + \int_0^x (\frac{t}{3} + \frac{1}{6}) \, {\rm d}t = \left. (\frac{t^2}{6} + \frac{t}{6}) \right| _0^x = \frac{x^2}{6} + \frac{x}{6} \end{aligned}

F ( x ) = { 0 , x < 0 ; x 2 6 + x 6 , 0 x < 2 ; 1 , x 2. F(x)= \begin{cases} 0, & x<0; \\ \cfrac{x^2}{6} + \cfrac{x}{6}, &0\leq x<2; \\ 1, & x\geq 2. \end{cases}

(3)

f ( x ) = { x / 3 + 1 / 6 , 0 < x < 2 ; 0 , 其他. f(x)= \begin{cases} x/3+1/6, & 0<x<2; \\ 0, & \text{其他.} \end{cases}

P ( 1 < X < 1 ) = 1 1 f ( x ) d x = 1 0 f ( x ) d x + 0 1 f ( x ) d x = 1 0 0 d x + 0 1 ( x 3 + 1 6 ) d x = 0 + ( x 2 6 + x 6 ) 0 1 = 1 3 . \begin{aligned} P(-1<X<1)&=\int_{-1}^1 f(x) \, {\rm d}x \\ &= \int_{-1}^0 f(x) \, {\rm d}x + \int_0^1 f(x) \, {\rm d}x \\ &= \int_{-1}^0 0 \, {\rm d}x + \int_0^1 (\cfrac{x}{3} + \cfrac{1}{6}) \, {\rm d}x \\ &= 0 + \left. (\cfrac{x^2}{6} + \cfrac{x}{6}) \right| _0^1 = \cfrac{1}{3}. \end{aligned}

F ( x ) = { 0 , x < 0 ; x 2 6 + x 6 , 0 x < 2 ; 1 , x 2. F(x)= \begin{cases} 0, & x<0; \\ \cfrac{x^2}{6} + \cfrac{x}{6}, &0\leq x<2; \\ 1, & x\geq 2. \end{cases}

P ( 1 < X < 1 ) = F ( 1 ) F ( 1 ) = 1 2 6 + 1 6 0 = 1 3 P(-1<X<1)=F(1)-F(-1)=\cfrac{1^{2}}{6}+\cfrac{1}{6} - 0 = \cfrac{1}{3}


发布了52 篇原创文章 · 获赞 16 · 访问量 5757

猜你喜欢

转载自blog.csdn.net/weixin_45642918/article/details/103382360