大二下:概率论与数理统计复习 2.随机变量及其分布之实例演战

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/COCO56/article/details/100569528

大二下:概率论与数理统计复习 导航页:https://blog.csdn.net/COCO56/article/details/100152856

文章目录

1.

一袋中装有5只球,编号为1,2,3,4,5。在袋中同时取出3只球,3只球的最大编号为X,求随机变量X的分布律。
解:

X 3 4 5
P 0.1 0.3 0.6

P ( X = 3 ) = C 2 2 C 5 3 = 0.1 ,   P ( X = 4 ) = C 3 2 C 5 3 = 0.3 ,   P ( X = 5 ) = C 4 2 C 5 3 = 0.6 P(X=3)=\frac{C_2^2}{C_5^3}=0.1,\ P(X=4)=\frac{C_3^2}{C_5^3}=0.3, \ P(X=5)=\frac{C_4^2}{C_5^3}=0.6
在这里插入图片描述

2.

某吧台柜台前有吧凳7张,无人就坐,现有2个客人进来随机就坐,则两人就坐相隔凳子数X的概率分布为。
解:
C 7 2 A 2 2 = 42 总数:C_7^2A_2^2=42

X 0 1 2 3 4 5
P 6 21 \frac{6}{21} 5 21 \frac{5}{21} 4 21 \frac{4}{21} 3 21 \frac{3}{21} 2 21 \frac{2}{21} 1 21 \frac{1}{21}

P ( X = 0 ) = ( 7 1 ) × A 2 2 42 = 6 21 P ( X = 1 ) = ( 7 2 ) × A 2 2 42 = 5 21 P ( X = 2 ) = ( 7 3 ) × A 2 2 42 = 4 21 P ( X = 3 ) = ( 7 4 ) × A 2 2 42 = 3 21 P ( X = 4 ) = ( 7 5 ) × A 2 2 42 = 2 21 P ( X = 5 ) = ( 7 6 ) × A 2 2 42 = 1 21 \begin{aligned} &P(X=0)=\frac{(7-1)\times A_2^2}{42}=\frac{6}{21} &P(X=1)=\frac{(7-2)\times A_2^2}{42}=\frac{5}{21} \\ &P(X=2)=\frac{(7-3)\times A_2^2}{42}=\frac{4}{21} &P(X=3)=\frac{(7-4)\times A_2^2}{42}=\frac{3}{21} \\ &P(X=4)=\frac{(7-5)\times A_2^2}{42}=\frac{2}{21} &P(X=5)=\frac{(7-6)\times A_2^2}{42}=\frac{1}{21} \\ \end{aligned}
在这里插入图片描述

3.

设随机变量X的分布律为:

X 0 1 2
p k p_k 0.3 0.5 0.2

求X的分布函数 F x ( x ) F_x(x)
解:
F x ( x ) = P ( X x ) F_x(x)=P(X\le x)
F x ( x ) = { 0 , x < 0 0.3 , 0 x < 1 0.8 , 1 x < 2 1 , x 2 F_x(x)= \left\{ \begin{aligned} &0, &x<0\\ &0.3, &0\le x<1\\ &0.8, &1\le x<2\\ &1, &x\ge2 \end{aligned} \right.
在这里插入图片描述
注:这类问题有套路,对于分布律为

X A B C
p k p_k α \alpha β \beta γ \gamma

的随机变量X,其分布函数为:
F ( x ) = { 0 , x < A , α , A x < B , α + β , B x < C , 1 , x C . F(x)= \left\{ \begin{aligned} &0, &x<A,\\ &\alpha, &A\le x<B,\\ &\alpha+\beta, &B\le x<C,\\ &1, &x\ge C. \end{aligned} \right.
X n n + 1 0 1 ( α + β + γ = 1 ) 分布律X有n个取值,分布函数大括号后面就有n+1行;分布函数第一行取值为0,最后一行取值为1(\alpha+\beta+\gamma=1),中间为概率逐个相加,自行体会。

4.

随机变量X的分布律为:

X -2 -1 0 1 2
p k p_k 1 5 \frac{1}{5} 1 6 \frac{1}{6} 1 5 \frac{1}{5} 1 15 \frac{1}{15} 11 30 \frac{11}{30}

Y = ( X 1 ) 2 Y F Y ( y ) 求Y=(X-1)^2的分布律;Y的分布函数F_Y(y)。
分析:求离散随机变量函数的分布律,分两步:

  1. 根据X的值求出对应的Y的值;
  2. 求出的Y值如果相等,则合并起来,对应概率值相加,再写出对应分布律。

解:求对应Y的值:

X -2 -1 0 1 2
Y 9 4 1 0 1
p k p_k 1 5 \frac{1}{5} 1 6 \frac{1}{6} 1 5 \frac{1}{5} 1 15 \frac{1}{15} 11 30 \frac{11}{30}

合并相同取值得到Y的分布律为:

Y 9 4 1 0
p k p_k 1 5 \frac{1}{5} 1 6 \frac{1}{6} 17 30 \frac{17}{30} 1 15 \frac{1}{15}

从小到大重排为:

Y 0 1 4 9
p k p_k 1 15 \frac{1}{15} 17 30 \frac{17}{30} 1 6 \frac{1}{6} 1 5 \frac{1}{5}

Y的分布函数:
F Y ( y ) = { 0 , y < 0 , 1 15 , 0 y < 1 , 19 30 , 1 y < 4 , 4 5 , 4 y < 9 , 1 , 9 y . F_Y(y)= \left\{ \begin{aligned} &0, &y<0,\\ &\frac{1}{15}, &0\le y<1,\\ &\frac{19}{30}, &1\le y<4,\\ &\frac{4}{5}, &4\le y<9,\\ &1, &9\le y. \end{aligned} \right.

5.

X P ( λ ) ( ) P ( X = 0 ) = e 2 λ = 2 , P ( X 2 ) = 5 e 2 . 设随机变量X\sim P(\lambda)(泊松分布),且P(X=0)=e^{-2},则常数\lambda =\underline{2}, 概率P(X\le2)=\underline{5e^{-2}}.
解:
P ( X = k ) = λ k e λ k ! P(X=k)=\frac{\lambda^k\cdot e^{-\lambda}}{k!}
P ( X = 0 ) = e λ 0 ! = e λ = ^ e 2 λ = 2 P(X=0)=\frac{e^{-\lambda}}{0!}=e^{-\lambda}\hat=e^{-2}\Rightarrow \lambda=2
P ( X 2 ) = P ( X = 0 ) + P ( X = 1 ) + P ( X = 2 ) = e 2 + 2 e 2 1 ! + 2 2 e 2 2 ! = 5 e 2 \begin{aligned}P(X\le2)&=P(X=0)+P(X=1)+P(X=2)\\ &=e^{-2}+\frac{2\cdot e^{-2}}{1!}+\frac{2^2\cdot e^{-2}}{2!}=5e^{-2}\end{aligned}

6.

X U ( 1 , 6 ) ( ) X t t 2 X t + 1 = 0 . 设随机变量X\sim U(1,6)(均匀分布),则X的概率密度函数为,关于t的二次方程t^2-Xt+1=0有实根的概率为.
解:均匀分布的概率密度函数为 f ( x ) = { 1 b a , a < x < b 0 , , f(x)=\left\{\begin{aligned} &\frac{1}{b-a}, &a<x<b\\ &0, &其他\end{aligned}\right.,\quad 则X的概率密度函数为 f ( x ) = { 1 5 , 1 < x < 6 0 , ; t 2 X t + 1 = 0 Δ = X 2 4 0 X 2 , P ( X 2 ) = 1 P ( X < 2 ) = 1 P ( 2 < X < 2 ) = 1 2 2 f ( x ) d x = 1 1 5 = 4 5 f(x)=\left\{\begin{aligned} &\frac{1}{5}, &1<x<6\\ &0, &其他\end{aligned}\right.;\\ 方程t^2-Xt+1=0有实根的充要条件是:\Delta=X^2-4\ge0\Leftrightarrow|X|\ge2, 于是所求概率为P(|X|\ge2)=1-P(|X|<2)=1-P(-2<X<2)=1-\int_{-2}^2f(x)dx=1-\frac{1}{5}=\frac{4}{5}
在这里插入图片描述

7.

X f ( x ) = { 1 4 e x 4 , x > 0 0 , x 0 ,   t 2 2 X t + ( X + 2 ) = 0 设随机变量X服从指数分布,概率密度为f(x)=\left\{\begin{aligned} &\frac{1}{4}e^{-\frac{x}{4}}, &x>0\\ &0, &x\le0\end{aligned}\right.,\ 则方程t^2-2Xt+(X+2)=0无实根的概率为
解:
方法一:
t 2 2 X t + ( X + 2 ) = 0 方程t^2-2Xt+(X+2)=0无实根的充要条件是:
δ = 4 X 2 4 ( X + 2 ) = 4 ( X 2 ) ( X + 1 ) < 0 1 < X < 2. \delta=4X^2-4(X+2)=4(X-2)(X+1)<0\Leftrightarrow-1<X<2.
于是所求概率为:
P ( 1 < X < 2 ) = 1 2 f ( x ) d x = 1 0 f ( x ) d x + 0 2 f ( x ) d x = 0 + ( e x 4 0 2 ) = 1 e 1 2 \begin{aligned}P(-1<X<2)&=\int_{-1}^{2}f(x)dx\\ &=\int_{-1}^{0}f(x)dx+\int_{0}^{2}f(x)dx\\ &=0+(-e^{-\frac{x}{4}}|^2_0)\\ &=1-e^{-\frac{1}{2}} \end{aligned}
方法二:
F ( x ) = 1 e λ x P ( 1 < X < 2 ) = F ( 2 ) F ( 1 ) = F ( 2 ) 0 = 1 e λ x = 1 e 1 4 × 2 = 1 e 1 2 \because指数分布的概率分布函数:F(x)=1-e^{-\lambda x}\\ \therefore P(-1<X<2)=F(2)-F(-1)=F(2)-0=1-e^{-\lambda x}=1-e^{-\frac{1}{4}\times2}=1-e^{-\frac{1}{2}}

8.

西 线 穿 X N ( 30 , 1 0 2 ) 线 沿 Y N ( 40 , 4 2 ) 50   2   线 某人家住市区西郊,在东郊上班,上班的第一条线路是横穿市区,所需时间X\sim N(30,10^2),第二条线路是沿环城公路,所需时间Y\sim N(40,4^2)(单位均为分钟),某天他提前50分钟出发,那么他该选择第\underline{\ 2\ }条线路。
解:此题的意思是让我们求哪条线路用时会大于50分钟的概率比较小,也就是求P(X>50)和P(Y>50)。标准化求得:
X N ( μ , σ 2 ) P { X > x } = P { X μ σ > x μ σ } = 1 Φ ( x μ σ ) \because 对于X\sim N(\mu, \sigma^2)有P\{X>x\}=P\{\frac{X-\mu}{\sigma}>\frac{x-\mu}{\sigma}\}=1-\Phi(\frac{x-\mu}{\sigma})
P ( X > 50 ) = P ( X 30 10 > 50 30 10 ) = P ( Z > 2 ) = 1 P ( Z 2 )     = 1 Φ ( 2 ) = 1 0.9772 = 0.0228 P ( Y > 50 ) = P ( X 40 4 > 50 40 4 ) = 1 Φ ( 2.5 ) = 1 0.9938 = 0.0062 \begin{aligned} \therefore&P(X>50)=P(\frac{X-30}{10}>\frac{50-30}{10})=P(Z>2)=1-P(Z\le2) \\&\qquad\qquad\ \ \ =1-\Phi(2)=1-0.9772=0.0228\\ &P(Y>50)=P(\frac{X-40}{4}>\frac{50-40}{4})=1-\Phi(2.5)=1-0.9938=0.0062 \end{aligned}
P ( Y > 50 ) 线 可以看出P(Y>50)的值较小,因此应该选择第二条线路。

9.

X f ( x ) = { 2 π 1 x 2 , 0 < x < c 0 , 设连续型随机变量X的概率密度为f(x)=\left\{\begin{aligned} &\frac{2}{\pi\sqrt{1-x^2}}, &0<x<c\\ &0, &其他\end{aligned}\right.
( 1 ) c ( 2 ) X F ( x ) . (1)确定c的值;(2)求X的分布函数F(x).
解:
( 1 ) + f ( x ) d x = 1 + 2 π 1 x 2 d x = 1 (1)\int_{-\infty}^{+\infty}f(x)dx=1\Rightarrow\int_{-\infty}^{+\infty}\frac{2}{\pi\sqrt{1-x^2}}dx=1
0 c 2 π 1 x 2 d x = 1 2 π arcsin x 0 c = 2 π arcsin c = ^ 1 \Rightarrow\int_{0}^{c}\frac{2}{\pi\sqrt{1-x^2}}dx=1\Rightarrow\frac{2}{\pi}\arcsin{x}|_0^c=\frac{2}{\pi}\arcsin{c}\hat=1
arcsin c = π 2 c = 1 \Rightarrow\arcsin{c}=\frac{\pi}{2}\Rightarrow c=1
( 2 ) 0 1 (2)显然分布函数分段点为0和1,则:
x < 0 F ( x ) = x f ( t ) d t = 0 ; 当x<0时,F(x)=\int_{-\infty}^xf(t)dt=0;
0 x < 1 F ( x ) = x f ( t ) d t = 0 x 2 π 1 t 2 d t = 2 π arcsin t 0 x = 2 π arcsin x ; 当0\le x<1时,F(x)=\int_{-\infty}^xf(t)dt=\int_0^x\frac{2}{\pi\sqrt{1-t^2}}dt=\frac{2}{\pi}\arcsin{t}|_0^x=\frac{2}{\pi}\arcsin{x};
x 1 F ( x ) = x f ( t ) d t = 0 f ( t ) d t + 0 1 f ( t ) d t + 1 f ( t ) d t = 1 ; 当x\ge1时,F(x)=\int_{-\infty}^xf(t)dt=\int_{-\infty}^0f(t)dt+\int_0^1f(t)dt+\int_1^{-\infty}f(t)dt=1;
所以,随机变量的分布函数为: F ( x ) = { 0 , x < 0 2 π arcsin x , 0 x < 1 1 , x 1 F(x)=\left\{\begin{aligned} &0, &x<0\\ &\frac{2}{\pi}\arcsin x, &0\le x<1\\&1, &x\ge1\end{aligned}\right.
在这里插入图片描述
在这里插入图片描述

X f ( x ) = { g ( x ) , a x < b , 0 , 注:若随机变量X的概率密度为:f(x)=\left\{\begin{aligned} &g(x), &a\le x<b,\\ &0, &其他\end{aligned}\right.
X f ( x ) = { 0 , x < a a x g ( t ) d t , a x < b 1 , x b 则X的分布函数为:f(x)=\left\{\begin{aligned} &0, &x<a\\&\int_a^xg(t)dt, &a\le x<b\\ &1, &x\ge b\end{aligned}\right.

10.

X f ( x ) = { A + B e 2 x , x > 0 , 0 , x 0. 设连续型随机变量X的分布函数为f(x)=\left\{\begin{aligned} &A+Be^{-2x}, &x>0,\\ &0, &x\le0.\end{aligned}\right.
( 1 ) A , B ; (1)确定A,B的值;
( 2 ) P ( 1 < x < 1 ) ; (2)求P(-1<x<1);
( 3 ) f x ( x ) ; (3)求概率密度函数f_x(x);
( 4 ) Y = 3 X + 1 , f Y ( y ) . (4)若Y=3X+1,求概率密度函数f_Y(y).
$解: $
( 1 ) (1)
lim x + ( A + B e 2 x ) = A = ^ 1 A = 1 lim x 0 + F ( x ) = 0 lim x 0 + ( A + B e 2 x ) = 1 + B = ^ 0 B = 1 A = 1 , B = 1 \begin{aligned} &\lim_{x \to +\infty}(A+Be^{-2x})=A\hat{=}1\Rightarrow A=1\\ &\lim_{x \to 0^+}F(x)=0\Rightarrow \lim_{x \to 0^+}(A+Be^{-2x})=1+B\hat{=}0\Rightarrow B=-1\\ &\therefore A=1, B=-1 \end{aligned}
( 2 ) P ( 1 < x < 1 ) = F ( 1 ) F ( 1 ) = 1 e 2 0 = 1 e 2 (2)P(-1<x<1)=F(1)-F(-1)=1-e^{-2}-0=1-e^{-2}
( 3 ) (3)
( e 2 x ) = e 2 x ( 2 ) \because (-e^{-2x})'=-e^{-2x}\cdot(-2)
f x = { 2 e 2 x , x > 0 , 0 , x 0. \therefore f_x=\left\{\begin{aligned} &2e^{-2x}, &x>0,\\ &0, &x\le0.\end{aligned}\right.
( 4 ) F Y ( y ) = P ( Y y ) = P ( 3 X + 1 y ) = P ( X y 1 3 ) = F X ( y 1 3 ) (4)\because F_Y(y)=P(Y\le y)=P(3X+1\le y)=P(X\le\frac{y-1}{3})=F_X(\frac{y-1}{3})
f Y ( y ) = f X ( y 1 3 ) 1 3 = { 2 3 e 2 y 1 3 , y 1 3 > 0 , 0 , y 1 3 0. = { 2 3 e 2 ( y 1 ) 3 , y > 1 , 0 , \therefore f_Y(y)=f_X(\frac{y-1}{3})\cdot\frac{1}{3}=\left\{\begin{aligned} &\frac{2}{3}e^{-2\cdot\frac{y-1}{3}}, &\frac{y-1}{3}>0,\\ &0, &\frac{y-1}{3}\le0.\end{aligned}\right.=\left\{\begin{aligned} &\frac{2}{3}e^{\frac{-2(y-1)}{3}}, &y>1,\\ &0, &其他 \end{aligned}\right.

11.

寿 X ( ) 设某种型号的电子元件的寿命X(单位:小时)的概率密度函数为:
f X ( x ) = { 1000 x 2 , x > 1000 , 0 , . f_X(x)=\left\{\begin{aligned} &\frac{1000}{x^2}, &x>1000,\\ &0, &其他.\end{aligned}\right.
( 1 ) 使 寿 1500 (1)求元件的使用寿命在1500小时以下的概率;
( 2 ) 5 Y 寿 1500 Y (2)现有5个这种元件独立工作,以Y表示其中寿命小于1500小时的元件个数,写出Y的分布律;
( 3 ) 5 1 寿 1500 (3)求这5个元件中最多有1个寿命小于1500小时的概率。
解:
( 1 ) P ( X < 1500 ) = 1500 f x ( x ) d x = 1000 1500 1000 x 2 d x = [ 1000 x ] 1000 1500 = 1 3 (1):P(X<1500)=\int_{-\infty}^{1500}f_x(x)dx=\int_{1000}^{1500}\frac{1000}{x^2}dx=[-\frac{1000}{x}]_{1000}^{1500}=\frac{1}{3}
( 2 ) Y Y b ( 5 , 1 3 ) . (2):Y服从二项分布:Y\sim b(5,\frac{1}{3}).
P ( Y = k ) = C 5 k ( 1 3 ) k ( 2 3 ) 5 k , k = 0 , 1 , 2 , 3 , 4 , 5 则分布律为:P(Y=k)=C_5^k(\frac{1}{3})^k(\frac{2}{3})^{5-k},\quad k=0,1,2,3,4,5

Y 0 1 2 3 4 5
P 32 243 \frac{32}{243} 80 243 \frac{80}{243} 80 243 \frac{80}{243} 40 243 \frac{40}{243} 10 243 \frac{10}{243} 1 243 \frac{1}{243}

( 3 ) : P ( Y 1 ) = P ( Y = 0 ) + P ( Y = 1 ) = 32 243 + 80 243 = 112 243 (3):P(Y\le1)=P(Y=0)+P(Y=1)=\frac{32}{243}+\frac{80}{243}=\frac{112}{243}

猜你喜欢

转载自blog.csdn.net/COCO56/article/details/100569528