【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布)


引言

承接前文,我们继续学习第二章,一维随机变量及其分布的第二部分内容。


三、常见的随机变量及其分布

3.1 常见的离散型随机变量及其分布律

(一)(0-1)分布

设随机变量 X X X 的可能取值为 0 或 1 ,且其概率为 P P P { X = 1 X=1 X=1 } = p , =p, =p, P P P { X = 0 X=0 X=0 } = 1 − p ( 0 < p < 1 =1-p(0 < p < 1 =1p(0<p<1 ,称 X X X 服从(0-1)分布,记为 X ∼ B ( 1 , p ) . X \sim B(1,p). XB(1,p).

(二)二项分布

设随机变量 X X X 的分布律为 P P P { X = k X=k X=k } = C n k p k ( 1 − p ) n − k =C_n^kp^k(1-p)^{n-k} =Cnkpk(1p)nk ,其中 k = 0 , 1 , 2 , … , n , 0 < p < 1 , k=0,1,2,\dots,n,0 < p < 1, k=0,1,2,,n,0<p<1, 称随机变量 X X X 服从二项分布,记为 X ∼ B ( n , p ) . X \sim B(n,p). XB(n,p).

回忆一下第一章的伯努利概型,也是二项分布。

(三)泊松分布

设离散型随机变量 X X X 的分布律为 P { X = k } = λ k k ! e − λ , P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda}, P{ X=k}=k!λkeλ, 其中, λ > 0 , k = 0 , 1 , 2 , … , n , \lambda > 0,k=0,1,2,\dots,n, λ>0,k=0,1,2,,n, 称随机变量 X X X 服从参数为 λ \lambda λ 的泊松分布,记为 X ∼ P ( λ ) . X \sim P(\lambda). XP(λ).

(四)几何分布

设离散型随机变量 X X X 的分布律为 P { X = k } = p ( 1 − p ) k − 1 , P\{X=k\}=p(1-p)^{k-1}, P{ X=k}=p(1p)k1, 其中, k = 1 , 2 , … , n , k=1,2,\dots,n, k=1,2,,n, 称随机变量 X X X 服从几何分布,记为 X ∼ G ( p ) . X \sim G(p). XG(p).

服从几何分布的随机变量 X X X 可以这么理解:设伯努利试验中只有两种结果 A , A ‾ , P ( A ) = p A,\overline{A},P(A)=p A,A,P(A)=p ,则 X X X 表示伯努利试验中 A A A 首次发生时的试验次数。
比如, X = 2 X=2 X=2 ,表示试验做了两次才第一次发生,也就是第一次试验没发生,第二次试验发生; X = n X=n X=n ,表示前 n − 1 n-1 n1 次试验没发生,第 n n n 次试验发生。这样就好理解了,公式也一下就记得住。

(五)超几何分布

设离散型随机变量 X X X 的分布律为 P { X = k } = C M k ⋅ C N − M n − k C N n , P\{X=k\}=\frac{C_M^k \cdot C_{N-M}^{n-k}}{C_N^n}, P{ X=k}=CNnCMkCNMnk, 其中, M , N , k , n M,N,k,n M,N,k,n 为自然数,且 M ≤ N , m a x { N − M , 0 } ≤ k ≤ m i n { M , n } , n ≤ N M \leq N,max\{N-M,0\} \leq k \leq min\{M,n\},n \leq N MN,max{ NM,0}kmin{ M,n},nN , 称随机变量 X X X 服从超几何分布,记为 X ∼ H ( n , M , N ) . X \sim H(n,M,N). XH(n,M,N).

3.2 常见的连续型随机变量及其概率密度

(一)均匀分布

设随机变量 X X X 的概率密度为 f ( x ) = { 1 b − a , a ≤ x ≤ b 0 , e l s e , f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & else \\ \end{cases}, f(x)={ ba1,0,axbelse, 称随机变量 X X X 在区间 ( a , b ) (a,b) (a,b) 内服从均匀分布,记为 X ∼ U ( a , b ) . X \sim U(a,b). XU(a,b).

扫描二维码关注公众号,回复: 16476555 查看本文章

若随机变量 X ∼ U ( a , b ) X \sim U(a,b) XU(a,b),则其分布函数为 F ( x ) = { 0 , x < a x − a b − a , a ≤ x ≤ b 1 , x ≥ b F(x)=\begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \leq x \leq b \\ 1,& x \geq b\\ \end{cases} F(x)= 0,baxa,1,x<aaxbxb

(二)指数分布

设随机变量 X X X 的概率密度为 f ( x ) = { λ e − λ x x > 0 0 , x ≤ 0 ( λ > 0 ) f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0, & x \leq 0 \\ \end{cases}(\lambda > 0) f(x)={ λeλx0,x>0x0(λ>0) 称随机变量 X X X 服从参数为 λ \lambda λ 的指数分布,记为 X ∼ E ( λ ) . X \sim E(\lambda). XE(λ).

若随机变量 X ∼ E ( λ ) X \sim E(\lambda) XE(λ),则其分布函数为 F ( x ) = { 1 − e − λ x , x ≥ 0 0 , x < 0 F(x)=\begin{cases} 1-e^{-\lambda x}, & x \geq 0 \\ 0,& x < 0\\ \end{cases} F(x)={ 1eλx,0,x0x<0

(三)正态分布

设随机变量 X X X 的概率密度为 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 ( − ∞ < x < + ∞ ) , f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}(-\infty < x < +\infty), f(x)=2π σ1e2σ2(xμ)2(<x<+), 称随机变量 X X X 服从正态分布,记为 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2),其概率密度函数如下图所示:
在这里插入图片描述
特别地,若 μ = 0 , σ = 1 \mu =0,\sigma=1 μ=0,σ=1 ,称随机变量 X X X 服从标准正态分布,记为 X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1) ,其概率密度为 φ ( x ) = 1 2 π e − x 2 2 ( − ∞ < x < + ∞ ) , \varphi(x)= \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}(-\infty < x < +\infty), φ(x)=2π 1e2x2(<x<+), 其概率密度函数如下图所示:
在这里插入图片描述
分布函数为 Φ ( x ) = ∫ − ∞ x φ ( t ) d t . \varPhi(x)=\int_{-\infty}^x\varphi(t)dt. Φ(x)=xφ(t)dt. 正态分布具有如下性质:

(1)若 X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1) ,则其概率密度函数 φ ( x ) \varphi(x) φ(x) 为偶函数,且 P { X ≤ 0 } = Φ ( 0 ) = 0.5 , P\{X \leq 0 \}=\varPhi(0)=0.5, P{ X0}=Φ(0)=0.5, P { X ≤ − a } = Φ ( − a ) = P { X > a } = 1 − Φ ( a ) . P\{X \leq-a\}=\varPhi(-a)=P\{X > a\}=1-\varPhi(a). P{ Xa}=Φ(a)=P{ X>a}=1Φ(a). (2)若随机变量 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) ,则 P { X ≤ μ } = P { X > μ } = 0.5 , P\{X \leq \mu\}=P\{X > \mu\}=0.5, P{ Xμ}=P{ X>μ}=0.5, 即正态分布的密度函数的图像关于 x = μ x=\mu x=μ 对称。

(3)若随机变量 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) ,则 X − μ σ ∼ N ( 0 , 1 ) . \frac{X-\mu}{\sigma} \sim N(0,1). σXμN(0,1).

(4)若随机变量 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) ,则 P { a < X ≤ b } = F ( b ) − F ( a ) = Φ ( b − μ σ ) − Φ ( a − μ σ ) . P\{a < X \leq b\}=F(b)-F(a)=\varPhi(\frac{b-\mu}{\sigma})-\varPhi(\frac{a-\mu}{\sigma}). P{ a<Xb}=F(b)F(a)=Φ(σbμ)Φ(σaμ). (5) Φ ( a ) + Φ ( b ) = { < 1 , a + b < 0 = 1 , a + b = 0   > 1 , a + b > 0 \varPhi(a)+\varPhi(b)=\begin{cases} <1, & a+b< 0 \\ =1,& a+b= 0\\ \ >1 ,& a+b> 0\\ \end{cases} Φ(a)+Φ(b)= <1,=1, >1,a+b<0a+b=0a+b>0


四、随机变量函数的分布

X X X 为随机变量,其分布已知,称 Y = φ ( X ) Y=\varphi(X) Y=φ(X) 为随机变量 X X X 的函数,研究随机变量 Y Y Y 的分布及随机变量函数的分布。

(一)离散型随机变量函数的分布

X X X 为随机变量, Y = φ ( X ) Y=\varphi(X) Y=φ(X) ,只要根据 X X X 的可能取值及概率求出 Y Y Y 的可能取值及概率,即可得到 Y Y Y 的分布律。

(二)连续型随机变量函数的分布

X X X 为连续型随机变量,其概率密度为 f ( x ) f(x) f(x) ,又 Y = φ ( x ) Y=\varphi(x) Y=φ(x) ,求随机变量 Y Y Y 的分布时,先求 Y Y Y 的分布函数 P { Y ≤ y } = P { φ ( X ) ≤ y } , P\{Y \leq y\}=P\{\varphi(X) \leq y\}, P{ Yy}=P{ φ(X)y}, 再通过 X X X 的分布求出 Y Y Y 的分布。

猜你喜欢

转载自blog.csdn.net/Douglassssssss/article/details/132553804