离散非周期信号傅里叶变换 — Fourier Transform of Discrete-Time Aperiodic Signals

离散非周期傅里叶变换的思想就是将非周期信号拼接成为周期的离散信号来处理。如下图所示:
在这里插入图片描述
离散非周期信号 x [ n ] x[n] 拼接成周期信号 x ~ [ n ] \widetilde{x}[n] n 2 n 1 = N n2-n1=N 。从而我们可以得到 x ~ [ n ] \widetilde{x}[n] 的傅立叶级数表示:
x ~ [ n ] = k = < N > X k e i k 2 π N n \widetilde{x}[n] = \sum_{k=<N>}^{} X_{k}e^{ik\frac{2\pi}{N}n}
其中, X k = 1 N n = < N > x ~ [ n ] e i k 2 π N n X_{k} = \frac{1}{N} \sum_{n=<N>}^{}\widetilde{x}[n]e^{-ik\frac{2\pi}{N}n} 。由于 n 2 n 1 = N n2-n1=N ,且 x [ n ] = x ~ [ n ] x[n] = \widetilde{x}[n] 在区间 [ n 1 , n 2 ] [n1,n2] ,而对于区间 [ n 1 , n 2 ] [n1,n2] 之外的值, x [ n ] = 0 x[n]=0 。所以得:
X k = 1 N n = n 1 n 2 x [ n ] e i k 2 π N n = 1 N n = x [ n ] e i k 2 π N n X_{k} = \frac{1}{N} \sum_{n=n1}^{n2}x[n]e^{-ik\frac{2\pi}{N}n} = \frac{1}{N} \sum_{n=-\infty}^{\infty}x[n]e^{-ik\frac{2\pi}{N}n}

X ( e i w ) = n = x [ n ] e i w n X(e^{iw}) = \sum_{n=-\infty}^{\infty}x[n]e^{-iwn} ,其中 w = k w 0 = k 2 π N w = kw_{0} = k\frac{2\pi}{N} 。得:
X k = 1 N X ( e i k w 0 ) X_{k} = \frac{1}{N}X(e^{ikw_{0}})
将上式代入 x ~ [ n ] \widetilde{x}[n] 的傅立叶级数,得:
x ~ [ n ] = k = < N > 1 N X ( e i k w 0 ) e i k 2 π N n = 1 2 π k = < N > X ( e i k w 0 ) e i k w 0 n w 0 \begin{aligned} & \widetilde{x}[n] = \sum_{k=<N>}^{} \frac{1}{N}X(e^{ikw_{0}})e^{ik\frac{2\pi}{N}n} \\ & = \frac{1}{2\pi} \sum_{k=<N>}^{} X(e^{ikw_{0}})e^{ikw_{0}n}w_{0} \end{aligned}

另因为 k k 为整数, d k dk 表示 k k 值一次的变化量,所以 d k = 1 dk=1 。那么 k = < N > d k \sum_{k=<N>}^{} \dots dk 等价于 k = < N > d k \int_{k=<N>}^{} \dots dk 。因此,上式继续推导:
x ~ [ n ] = 1 2 π k = < N > X ( e i k w 0 ) e i k w 0 n w 0 = 1 2 π k = < N > X ( e i k w 0 ) e i k w 0 n w 0 d k = 1 2 π 2 π X ( e i w ) e i w n d w \begin{aligned} & \widetilde{x}[n] = \frac{1}{2\pi} \sum_{k=<N>}^{} X(e^{ikw_{0}})e^{ikw_{0}n}w_{0} \\ & = \frac{1}{2\pi} \int_{k=<N>}^{} X(e^{ikw_{0}})e^{ikw_{0}n}w_{0}dk \\ & = \frac{1}{2\pi} \int_{2\pi}^{} X(e^{iw})e^{iwn}dw \end{aligned}

N N \rightarrow \infty 时, x ~ [ n ] = x [ n ] \widetilde{x}[n] = x[n] 。至此,我们已经得到离散信号 x [ n ] x[n] 的傅里叶变换 X ( e i w ) X(e^{iw}) ,且信号 x [ n ] x[n] X ( e i w ) X(e^{iw}) 得逆变换。如下:
{ x [ n ] = 1 2 π 2 π X ( e i w ) e i w n d w X ( e i w ) = n = x [ n ] e i w n \begin{cases} & x[n] = \frac{1}{2\pi} \int_{2\pi}^{} X(e^{iw})e^{iwn}dw \\ & X(e^{iw}) = \sum_{n=-\infty}^{\infty}x[n]e^{-iwn} \end{cases}

2维离散非周期傅里叶变换

{ x [ m , n ] = 1 ( 2 π ) 2 2 π 2 π X ( e i w 1 , e i w 2 ) e i ( w 1 m + w 2 n ) d w 1 d w 2 X ( e i w 1 , e i w 2 ) = m = n = x [ m , n ] e i ( w 1 m + w 2 n ) \begin{cases} & x[m,n] = \frac{1}{(2\pi)^2} \int_{2\pi}^{}\int_{2\pi}^{} X(e^{iw_{1}},e^{iw_{2}})e^{i(w_{1}m+w_{2}n)}dw_{1}dw_{2} \\ & X(e^{iw_{1}},e^{iw_{2}}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}x[m,n]e^{-i(w_{1}m+w_{2}n)} \end{cases}

猜你喜欢

转载自blog.csdn.net/u012841922/article/details/84664627