离散周期信号傅里叶级数 — Fourier Series of Discrete-Time Periodic Signals

连续信号通常是数学领域里的理论研究对象,而现实生活中我们遇到的信号往往是离散的,且计算机只能处理有限长度的离散信号。所以为了让傅立叶分析解决实际问题,有必要将其推广到离散信号领域。【阅读本文前,建议先了解连续周期信号傅里叶级数
signals
连续周期信号和离散周期信号如上图:左图为连续周期正弦波 x ( t ) = x ( t + T ) x(t)=x(t+T) ,其中周期 T = 2 π T=2\pi ;右图为左图正弦波的周期离散采样, x [ n ] = x [ n + N ] x[n]=x[n+N] ,其中周期 N = 10 N=10

和连续周期信号傅立叶级数基于一样的猜想,离散周期信号傅立叶级数是想寻得一组不同振幅、不同频率和不同相位的正弦离散函数以表达某离散周期信号。即:
x [ n ] = C + k = 1 a k sin ( k w 0 n ) + k = 1 b k cos ( k w 0 n ) x[n] = C + \sum_{k=1}^{\infty}a_{k}\sin(kw_{0}n) + \sum_{k=1}^{\infty}b_{k}\cos(kw_{0}n)
其中 w 0 = 2 π N w_{0}=\frac{2\pi}{N} 。根据欧拉公式 e i x = cos ( x ) + i sin ( x ) e^{ix}=\cos(x)+i\sin(x) 得:
{ cos ( x ) = e i x + e i x 2 sin ( x ) = e i x e i x 2 i \begin{cases} \cos(x) = \frac{e^{ix}+e^{-ix}}{2} \\ \sin(x) = \frac{e^{ix}-e^{-ix}}{2i} \end{cases}

因此,上式可推导为:
x [ n ] = C + k = 1 ( a k e i k w 0 n e i k w 0 n 2 i + b k e i k w 0 n + e i k w 0 n 2 ) = C + k = 1 ( i a k b k 2 e i k w 0 n + i a k b k 2 e i k w 0 n ) \begin{aligned} & x[n] = C + \sum_{k=1}^{\infty}(a_{k}\frac{e^{ikw_{0}n}-e^{-ikw_{0}n}}{2i} + b_{k}\frac{e^{ikw_{0}n}+e^{-ikw_{0}n}}{2}) \\ & = C + \sum_{k=1}^{\infty}(\frac{ia_{k}-b_{k}}{2}e^{ikw_{0}n} + \frac{-ia_{k}-b_{k}}{2}e^{-ikw_{0}n}) \\ \end{aligned}
A k = i a k b k 2 A_{k} = \frac{ia_{k}-b_{k}}{2} B k = i a k b k 2 B_{k} = \frac{-ia_{k}-b_{k}}{2} ,得到 x [ n ] x[n]的傅立叶级数复数形式的表达式
x [ n ] = C e i 0 w 0 n + k = 1 A k e i k w 0 n + k = 1 B k e i k w 0 n = k = 1 B k e i k w 0 n + C e i 0 w 0 n + k = 1 A k e i k w 0 n = k = D k e i k w 0 n \begin{aligned} & x[n] = Ce^{i0w_{0}n} + \sum_{k=1}^{\infty}A_{k}e^{ikw_{0}n} + \sum_{k=1}^{\infty}B_{k}e^{-ikw_{0}n} \\ & = \sum_{k=-1}^{-\infty}B_{-k}e^{ikw_{0}n} + Ce^{i0w_{0}n} + \sum_{k=1}^{\infty}A_{k}e^{ikw_{0}n} \\ & = \sum_{k=-\infty}^{\infty}D_{k}e^{ikw_{0}n} \end{aligned}

我们接着观察该级数中的单项 e i k w 0 n e^{ikw_{0}n}
ϕ k [ n ] = e i k w 0 n = e i k 2 π N n , n = 0 , ± 1 , ± 2 , \phi_{k}[n] = e^{ikw_{0}n} = e^{ik\frac{2\pi}{N}n}, n=0,\pm1,\pm2, \dots
先说结论: ϕ k [ n ] = ϕ k + r N [ n ] \phi_{k}[n]=\phi_{k+rN}[n] ,其中 k = 0 , ± 1 , ± 2 , k=0,\pm1,\pm2, \dots r = 0 , 1 , 2 , r=0,1,2,\dots N N 为离散信号 x [ n ] x[n] 的变化周期。证明过程如下:
ϕ k + r N [ n ] = e i ( k + r N ) 2 π N n = e i k 2 π N n e i r 2 π n = e i k 2 π N n ( e i 2 π ) r n = e i k 2 π N n ( cos ( 2 π ) + i sin ( 2 π ) ) r n = e i k 2 π N n ( 1 ) r n = e i k 2 π N n = ϕ k [ n ] \begin{aligned} & \phi_{k+rN}[n] = e^{i(k+rN)\frac{2\pi}{N}n}=e^{ik\frac{2\pi}{N}n}e^{ir{2\pi}n} = e^{ik\frac{2\pi}{N}n}(e^{i{2\pi}})^{rn} \\ & = e^{ik\frac{2\pi}{N}n}(\cos(2\pi) +i\sin(2\pi))^{rn} \\ & = e^{ik\frac{2\pi}{N}n}(1)^{rn} \\ & = e^{ik\frac{2\pi}{N}n} = \phi_{k}[n] \end{aligned}

因此,得到离散周期信号 x [ n ] x[n] 的傅立叶级数如下:
x [ n ] = k = < N > X k e i k 2 π N n x[n] = \sum_{k=<N>}^{}X_{k}e^{ik\frac{2\pi}{N}n}

给出: n = < N > e i k 2 π N n = { N , k = 0 , ± N , ± 2 N , 0 , o t h e r w i s e \sum_{n=<N>}^{}e^{ik\frac{2\pi}{N}n} = \begin{cases} N, & k=0, \pm{N}, \pm{2N}, \dots \\ 0, & otherwise \end{cases} S = n = < N > e i k 2 π N n S = \sum_{n=<N>}^{}e^{ik\frac{2\pi}{N}n} ,证明过程如下: S ( 1 k N 1 ) = e i k 2 π N S S = e i k 2 π N N e i k 2 π N 0 = e i k 2 π 1 = 1 k 1 = 0 S(1^{\frac{k}{N}}-1) = e^{ik\frac{2\pi}{N}}S-S = e^{ik\frac{2\pi}{N}N} - e^{ik\frac{2\pi}{N}0} = e^{ik{2\pi}} - 1=1^{k}-1 = 0 由上式可知,当 k 0 , ± N , ± 2 N , k \neq 0, \pm{N}, \pm{2N}, \dots 时: ( 1 k N 1 ) 0 S = n = < N > e i k 2 π N n = 0 (1^{\frac{k}{N}}-1) \neq 0 且 S = \sum_{n=<N>}^{}e^{ik\frac{2\pi}{N}n} = 0 k = 0 , ± N , ± 2 N , k = 0, \pm{N}, \pm{2N}, \dots 时: S = n = < N > e i k 2 π N n = n = < N > ( e i 2 π ) k N n = n = < N > ( 1 ) r n = N , r = 0 , ± 1 , ± 2 , S = \sum_{n=<N>}^{}e^{ik\frac{2\pi}{N}n} = \sum_{n=<N>}^{}(e^{i2\pi} )^{\frac{k}{N}n} = \sum_{n=<N>}^{}(1)^{rn} = N, r = 0,\pm1,\pm2,\dots

现在,对离散周期信号 x [ n ] x[n] 每时刻的信号求和,并乘以 e i r 2 π N n e^{-ir\frac{2\pi}{N}n} 得:
n = < N > x [ n ] e i r 2 π N n = n = < N > k = < N > X k e i ( k r ) 2 π N n = k = < N > X k n = < N > e i ( k r ) 2 π N n \sum_{n=<N>}^{} x[n] e^{-ir\frac{2\pi}{N}n} = \sum_{n=<N>}^{} \sum_{k=<N>}^{}X_{k}e^{i(k-r)\frac{2\pi}{N}n} = \sum_{k=<N>}^{} X_{k} \sum_{n=<N>}^{}e^{i(k-r)\frac{2\pi}{N}n}
由上面给出的公式可以得出,当 k r = 0 k-r=0 时, n = < N > e i ( k r ) 2 π N n = N \sum_{n=<N>}^{}e^{i(k-r)\frac{2\pi}{N}n} = N ;当 k r 0 k-r \neq 0 时, n = < N > e i ( k r ) 2 π N n = 0 \sum_{n=<N>}^{}e^{i(k-r)\frac{2\pi}{N}n} = 0 。所以:
n = < N > x [ n ] e i r 2 π N n = k = < N > X k n = < N > e i ( k r ) 2 π N n = X r N \sum_{n=<N>}^{} x[n] e^{-ir\frac{2\pi}{N}n} = \sum_{k=<N>}^{} X_{k} \sum_{n=<N>}^{}e^{i(k-r)\frac{2\pi}{N}n} = X_{r} N
即:
X r = 1 N n = < N > x [ n ] e i r 2 π N n X_{r} = \frac{1}{N} \sum_{n=<N>}^{} x[n] e^{-ir\frac{2\pi}{N}n}

至此,我们已经得到离散周期信号 x [ n ] x[n] 的傅立叶级数(如下):
x [ n ] = k = < N > X k e i k 2 π N n x[n] = \sum_{k=<N>}^{}X_{k}e^{ik\frac{2\pi}{N}n}
其中, X k = 1 N n = < N > x [ n ] e i k 2 π N n X_{k} = \frac{1}{N} \sum_{n=<N>}^{} x[n] e^{-ik\frac{2\pi}{N}n}

猜你喜欢

转载自blog.csdn.net/u012841922/article/details/84582198