Python遇见机器学习 ---- 多项式回归 Polynomial Regression

综述 

“寒泉自可斟,况复杂肴醴。”

 本文采用编译器:jupyter 

在介绍线性回归模型时,曾假设所有模拟的数据均满足线性关系,即y是x的一次函数,然而现实中极少有这么理想的数据,这是我们就需要考虑更一般化的方法了,其中多项式回归为我们提供了一些思路。

如上图,虽然y是关于x的二次方程,但实际上如果把x平方与x分别看成两个特征就变成我们之前所介绍的线性回归问题。

即,相当于我们对原来的数据增加了一些特征(升维),但本质上还是求的这条曲线。

01 多项式回归

import numpy as np
import matplotlib.pyplot as plt

x = np.random.uniform(-3, 3, size=100)
X = x.reshape(-1, 1)

y = 0.5 * x**2 + x + 2 + np.random.normal(0, 1, size=100)

plt.scatter(x, y)
plt.show()

# 先查看线性回归的效果
from sklearn.linear_model import LinearRegression
​
lin_reg = LinearRegression()
lin_reg.fit(X, y)
# Out[6]:
# LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

y_predict = lin_reg.predict(X)

plt.scatter(x, y)
plt.plot(x, y_predict, color='r')
plt.show() # 可以看到效果并不是很好

 解决方法,添加一个特征


(X**2).shape
# Out[9]:
# (100, 1)

X2 = np.hstack([X, X**2])

X2.shape
# Out[11]:
# (100, 2)

lin_reg2 = LinearRegression()
lin_reg2.fit(X2, y)
y_predict2 = lin_reg2.predict(X2)

plt.scatter(x, y)
# x是乱序的,我们应该按照x从小到大来绘制
plt.plot(np.sort(x), y_predict2[np.argsort(x)], color='r')
plt.show() 

lin_reg2.coef_ # 查看系数a和b
# Out[15]:
# array([ 0.84918223,  0.48009585])

lin_reg2.intercept_ # 查看截距
# Out[16]:
# 1.9942420971618127

02 scikit-learn中的多项式回归和Pipeline

PolynomialFeatures(degree=3) 中的参数degree表示阶数,计算如下:

import numpy as np
import matplotlib.pyplot as plt

x = np.random.uniform(-3, 3, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x**2 + x + 2 + np.random.normal(0, 1, size=100)

# 多项式回归最主要的事情是数据预处理
from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(degree=2) # 添加二次幂特征
​
poly.fit(X)
X2 = poly.transform(X)

X2.shape
# Out[5]:
# (100, 3)

X2[:5,:] # 第一列是x的0次方,最后一列是x的2次方
# Out[7]:
"""
array([[ 1.        ,  1.72084082,  2.96129314],
       [ 1.        , -0.72185736,  0.52107804],
       [ 1.        , -0.97576562,  0.95211855],
       [ 1.        , -1.76849693,  3.12758138],
       [ 1.        , -1.54863002,  2.39825493]])
"""

from sklearn.linear_model import LinearRegression
​
lin_reg2 = LinearRegression()
lin_reg2.fit(X2, y)
y_predict2 = lin_reg2.predict(X2)

plt.scatter(x, y)
plt.plot(np.sort(x), y_predict2[np.argsort(x)], color='r')
plt.show()

lin_reg2.coef_
# Out[10]:
# array([ 0.        ,  1.0779785 ,  0.55559044])

lin_reg2.intercept_
# Out[11]:
# 1.7321546824053558

关于PolynomialFeatures

X = np.arange(1, 11).reshape(-1, 2)

X.shape
# Out[13]:
# (5, 2)

X
"""
Out[14]:
array([[ 1,  2],
       [ 3,  4],
       [ 5,  6],
       [ 7,  8],
       [ 9, 10]])
"""

poly = PolynomialFeatures(degree=2)
poly.fit(X)
X2 = poly.transform(X)

X2.shape
# Out[16]:
# (5, 6)

# X的平方变成三列,分别是第一列的平方,第一列乘以第二列,第二列的平方
X2
"""
Out[17]:
array([[   1.,    1.,    2.,    1.,    2.,    4.],
       [   1.,    3.,    4.,    9.,   12.,   16.],
       [   1.,    5.,    6.,   25.,   30.,   36.],
       [   1.,    7.,    8.,   49.,   56.,   64.],
       [   1.,    9.,   10.,   81.,   90.,  100.]])
"""

poly = PolynomialFeatures(degree=3)
poly.fit(X)
X3 = poly.transform(X)

X3.shape
# Out[19]:
# (5, 10)

X3
"""
Out[20]:
array([[    1.,     1.,     2.,     1.,     2.,     4.,     1.,     2.,
            4.,     8.],
       [    1.,     3.,     4.,     9.,    12.,    16.,    27.,    36.,
           48.,    64.],
       [    1.,     5.,     6.,    25.,    30.,    36.,   125.,   150.,
          180.,   216.],
       [    1.,     7.,     8.,    49.,    56.,    64.,   343.,   392.,
          448.,   512.],
       [    1.,     9.,    10.,    81.,    90.,   100.,   729.,   810.,
          900.,  1000.]])
"""

Pipeline

x = np.random.uniform(-3, 3, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x**2 + x + 2 + np.random.normal(0, 1, size=100)

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
​
# 传入每一步骤所对应的类 1.多项式的特征 2.数据归一化 3.线性回归
poly_reg = Pipeline([
    ("poly", PolynomialFeatures(degree=2)),
    ("std_scaler", StandardScaler()),
    ("lin_reg", LinearRegression())
])

poly_reg.fit(X, y)
y_predict = poly_reg.predict(X)

plt.scatter(x, y)
plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r')
plt.show()

03 过拟合,欠拟合

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(666)
x = np.random.uniform(-3, 3, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x**2 + x + 2 + np.random.normal(0, 1, size=100)

plt.scatter(x, y)
plt.show()

使用线性回归

from sklearn.linear_model import LinearRegression
​
lin_reg = LinearRegression()
lin_reg.fit(X, y)
lin_reg.score(X, y)
# Out[4]:
# 0.49537078118650091

# 欠拟合
y_predict = lin_reg.predict(X)
plt.scatter(x, y)
plt.plot(np.sort(x), y_predict[np.argsort(x)], color='r')
plt.show()

# 使用均方误差来评判
from sklearn.metrics import mean_squared_error
​
y_predict = lin_reg.predict(X)
mean_squared_error(y, y_predict)
# Out[6]:
# 3.0750025765636577

使用多项式回归

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
​
def PolynomialRegression(degree):
    # 传入每一步骤所对应的类 1.多项式的特征 2.数据归一化 3.线性回归
    return Pipeline([
        ("poly", PolynomialFeatures(degree=degree)),
        ("std_scaler", StandardScaler()),
        ("lin_reg", LinearRegression())
    ])

poly2_reg = PolynomialRegression(degree=2)
poly2_reg.fit(X, y)
"""
Out[8]:
Pipeline(memory=None,
     steps=[('poly', PolynomialFeatures(degree=2, include_bias=True, interaction_only=False)), ('std_scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('lin_reg', LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False))])
"""

y2_predict = poly2_reg.predict(X)
# 计算均方误差
mean_squared_error(y, y2_predict)
# Out[9]:
# 1.0987392142417856

plt.scatter(x, y)
plt.plot(np.sort(x), y2_predict[np.argsort(x)], color='r')
plt.show()

# 令degree=10
poly100_reg = PolynomialRegression(degree=100)
poly100_reg.fit(X, y)
​
y100_predict = poly100_reg.predict(X)
mean_squared_error(y, y100_predict)
# Out[13]:
# 0.68726650324297611

plt.scatter(x, y)
plt.plot(np.sort(x), y100_predict[np.argsort(x)], color='r')
plt.show()

# 将横坐标均匀取值,查看100阶多项式回归拟合真正的曲线
​
# 如果degree太大,尽管均方误差较小,但是拟合出来的曲线可能完全不是我们想要的,称为过拟合
X_plot = np.linspace(-3, 3, 100).reshape(100, 1)
y_plot = poly100_reg.predict(X_plot)
​
plt.scatter(x, y)
plt.plot(X_plot[:,0], y_plot, color='r')
plt.axis([-3, 3, -1, 10])
plt.show()

测试数据集的意义:

我们在训练模型时,是将模型不断的优化以对训练数据集分类结果最优,但却不能排除训练数据集的特殊性。于是测试数据集的意义便是涌来测试模型的“真正”性能,因为对于模型来说测试数据集是“全新”的。

train test split的意义(测试泛化能力)

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)

lin_reg = LinearRegression()
lin_reg.fit(X_train, y_train)
​
y_predict = lin_reg.predict(X_test)
mean_squared_error(y_test, y_predict)
# Out[18]:
# 2.2199965269396573

poly2_reg = PolynomialRegression(degree=2)
poly2_reg.fit(X_train, y_train)
​
y2_predict = poly2_reg.predict(X_test)
mean_squared_error(y_test, y2_predict)
# Out[19]:
# 0.80356410562978997

# 虽然在面对训练数据集时均方误差较小,但是面对新的测试集时误差却变大了
poly10_reg = PolynomialRegression(degree=10)
poly10_reg.fit(X_train, y_train)
​
y10_predict = poly10_reg.predict(X_test)
mean_squared_error(y_test, y10_predict)
# Out[20]:
# 0.92129307221508061

# 误差非常大
poly100_reg = PolynomialRegression(degree=100)
poly100_reg.fit(X_train, y_train)
​
y100_predict = poly100_reg.predict(X_test)
mean_squared_error(y_test, y100_predict)
# Out[21]:
# 14075796390.678177

上面的绘图过程,实际是学习曲线:随着样本的逐渐增多,算法训练出的模型的表现能力。

04 学习曲线

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(666)
x = np.random.uniform(-3, 3, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x**2 + x + 2 + np.random.normal(0, 1, size=100)

plt.scatter(x, y)
plt.show()

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10)

X_train.shape
# Out[5]:
# (75, 1)

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
​
train_score = []
test_score = []
for i in range(1, 76):
    lin_reg = LinearRegression()
    lin_reg.fit(X_train[:i], y_train[:i])
    
    # 分别计算模型预测训练数据与测试数据的均方误差
    y_train_predict = lin_reg.predict(X_train[:i])
    train_score.append(mean_squared_error(y_train[:i], y_train_predict))
    
    y_test_predict = lin_reg.predict(X_test)
    test_score.append(mean_squared_error(y_test, y_test_predict))

# 绘制均方根误差曲线
plt.plot([i for i in range(1, 76)], np.sqrt(train_score), label='train')
plt.plot([i for i in range(1, 76)], np.sqrt(test_score), label='test')
plt.legend()
plt.show()

# 将上述方法进行封装
def plot_learning_curve(algo, X_train, X_test, y_train, y_test):
   
    train_score = []
    test_score = []
    for i in range(1, len(X_train)+1):
        algo.fit(X_train[:i], y_train[:i])
​
        # 分别计算模型预测训练数据与测试数据的均方误差
        y_train_predict = lin_reg.predict(X_train[:i])
        train_score.append(mean_squared_error(y_train[:i], y_train_predict))
​
        y_test_predict = algo.predict(X_test)
        test_score.append(mean_squared_error(y_test, y_test_predict))
        
    plt.plot([i for i in range(1, len(X_train)+1)], 
                             np.sqrt(train_score), label='train')
    plt.plot([i for i in range(1, len(X_train)+1)], 
                             np.sqrt(test_score), label='test')
    plt.legend()
    plt.axis([0, len(X_train)+1, 0, 4])
    plt.show()
    
plot_learning_curve(LinearRegression(), X_train, X_test, y_train, y_test) # 欠拟合

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
​
def PolynomialRegression(degree):
    # 传入每一步骤所对应的类 1.多项式的特征 2.数据归一化 3.线性回归
    return Pipeline([
        ("poly", PolynomialFeatures(degree=degree)),
        ("std_scaler", StandardScaler()),
        ("lin_reg", LinearRegression())
    ])

# 使用二阶多项式回归,稳定误差较低
poly2_reg = PolynomialRegression(degree=2)
plot_learning_curve(poly2_reg, X_train, X_test, y_train, y_test)

# 过拟合
poly30_reg = PolynomialRegression(degree=30)
plot_learning_curve(poly30_reg, X_train, X_test, y_train, y_test)

只将原来数据分为训练数据和测试数据其实还有缺点,训练数据负责训练模型,测试数据拿来调参,然而最好还有另外的数据集完成对模型的评测。

如果验证数据集中有比较极端的数据时仍然会导致模型的不准确。

解决办法:交叉验证

05 交叉验证

import numpy as np
from sklearn import datasets

digits = datasets.load_digits()
X = digits.data
y = digits.target

测试train_test_split

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.4)

from sklearn.neighbors import KNeighborsClassifier
​
best_score, best_p , best_k = 0, 0, 0
for k in range(2, 11):
    for p in range(1, 6):
        knn_clf = KNeighborsClassifier(weights='distance', n_neighbors=k, p=p)
        knn_clf.fit(X_train, y_train)
        score = knn_clf.score(X_test, y_test)
        
        if score > best_score:
            best_score, best_p , best_k = score, p, k
            
print("Best K = ", best_k)
print("Best P = ", best_p)
print("Best Score = ", best_score)

"""
Best K =  10
Best P =  4
Best Score =  0.986091794159
"""

使用交叉验证

from sklearn.model_selection import cross_val_score
​
knn_clf = KNeighborsClassifier()
# 默认将X_train分成三份进行交叉验证
cross_val_score(knn_clf, X_train, y_train)
# Out[6]:
# array([ 0.98071625,  0.97771588,  0.96629213])

# 交叉验证找到的k和p更趋近于最优情况,因为可能训练的模型可能过拟合了train_test_split中分离出来的测试数据集
# 交叉验证过程中一般不会过拟合某一数据,所以分值可能小一点
best_score, best_p , best_k = 0, 0, 0
for k in range(2, 11):
    for p in range(1, 6):
        knn_clf = KNeighborsClassifier(weights='distance', n_neighbors=k, p=p)
        scores = cross_val_score(knn_clf, X_train, y_train)
        score = np.mean(scores)
        
        if score > best_score:
            best_score, best_p , best_k = score, p, k
            
print("Best K = ", best_k)
print("Best P = ", best_p)
print("Best Score = ", best_score)

"""
Best K =  3
Best P =  3
Best Score =  0.978655813903
"""

best_knn_clf = KNeighborsClassifier(weights='distance', n_neighbors=3, p=3)

best_knn_clf.fit(X_train, y_train)
best_knn_clf.score(X_test, y_test)
# Out[9]:
# 0.98470097357440889

回顾网格搜索

from sklearn.model_selection import GridSearchCV
​
param_grid = [
    {
        'weights':['distance'],
        'n_neighbors':[i for i in range(2, 11)],
        'p':[i for i in range(1, 6)]
    }
]
​
grid_search = GridSearchCV(knn_clf, param_grid, verbose=1)
grid_search.fit(X_train, y_train)
Fitting 3 folds for each of 45 candidates, totalling 135 fits

[Parallel(n_jobs=1)]: Done 135 out of 135 | elapsed:  1.1min finished

"""
Out[10]:
GridSearchCV(cv=None, error_score='raise',
       estimator=KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=10, p=5,
           weights='distance'),
       fit_params=None, iid=True, n_jobs=1,
       param_grid=[{'weights': ['distance'], 'n_neighbors': [2, 3, 4, 5, 6, 7, 8, 9, 10], 'p': [1, 2, 3, 4, 5]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
       scoring=None, verbose=1)
"""

grid_search.best_score_
# Out[14]:
# 0.97866419294990725

grid_search.best_params_
# Out[12]:
# {'n_neighbors': 3, 'p': 3, 'weights': 'distance'}

best_knn_clf = grid_search.best_estimator_
best_knn_clf.score(X_test, y_test)
# Out[13]:
# 0.98470097357440889

# 指定交叉验证共分成几份
cross_val_score(knn_clf, X_train, y_train, cv=5)
# Out[15]:
# array([ 0.98181818,  0.99086758,  0.99069767,  0.95774648,  0.96682464])

# 网格搜索同上
GridSearchCV(knn_clf, param_grid, verbose=1, cv=5)
"""
Out[17]:
GridSearchCV(cv=5, error_score='raise',
       estimator=KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=10, p=5,
           weights='distance'),
       fit_params=None, iid=True, n_jobs=1,
       param_grid=[{'weights': ['distance'], 'n_neighbors': [2, 3, 4, 5, 6, 7, 8, 9, 10], 'p': [1, 2, 3, 4, 5]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
       scoring=None, verbose=1)
"""

偏差方差平衡

下图打靶的例子可以很好地解释二者差别,偏差是偏离中心的程度,方差是在中心附近离散的程度。

模型误差 = 偏差(Bias) + 方差(Variance) + 不可避免的误差

有一些算法是天生的高方差的算法,例如kNN;

非参数学习通常都是高方差算法,因为我们不对数据进行任何假设;

有一些算天生的高偏差的算法,例如线性回归;

参数学习通常都是高偏差算法,因为对数据有很强的假设。

然而大多数算法具有相应的参数,可以调整偏差与方差,比如kNN中的k,线性回归中的多项式回归......

偏差和方差通常是矛盾的。机器学习的主要挑战来自于方差!

为此有以下解决高方差的手段:

1. 降低模型复杂度

2. 减少数据维度,(降噪)

3. 增加样本数

4. 使用验证集

5. 模型正则化

 

查看过拟合时的参数theta,可以发现有一些theta值特别大使得曲线特别的陡峭,为了解决这个问题就需要加入模型正则化。

需要注意的是theta0不需要加进去,因为它并不是某一个x的系数,而是一个截距。决定曲线的高低而不是曲线的陡峭程度。

"""
array([  1.21097006e+12,   1.19194835e+01,   1.78867390e+02,
        -2.95986877e+02,  -1.79531574e+04,  -1.54151055e+04,
         8.34384008e+05,   8.19758496e+05,  -2.23628081e+07,
        -1.44767967e+07,   3.87211849e+08,   1.13415788e+08,
        -4.61600837e+09,  -1.25028833e+08,   3.93150842e+10,
        -5.47613295e+09,  -2.44176507e+11,   5.46306491e+10,
         1.11421150e+12,  -2.76412491e+11,  -3.71329570e+12,
         8.55468251e+11,   8.80961399e+12,  -1.60750401e+12,
        -1.39204217e+13,   1.49444135e+12,   1.19236839e+13,
         2.47521688e+11,   4.42430553e+11,  -1.64287100e+12,
        -1.05153908e+13,  -1.80895216e+11,   3.00207361e+12,
         2.75578358e+12,   8.74123180e+12,  -1.36695737e+12,
        -1.22670880e+12,  -7.00478229e+11,  -8.24896132e+12,
        -8.66309669e+11,  -2.75689072e+12,   1.39629460e+12,
         6.26144462e+12,  -3.47974176e+11,   6.29124500e+12,
         1.33767267e+12,  -6.11898796e+11,   2.92306225e+11,
        -6.59758602e+12,  -1.85664319e+12,  -4.13408892e+12,
        -9.72006661e+11,  -3.99038794e+11,  -7.53680910e+11,
         5.49213942e+12,   2.18520516e+12,   5.24342787e+12,
         7.50245141e+11,   5.50263530e+11,   1.70648559e+12,
        -2.26789352e+12,  -1.84598222e+11,  -5.47303676e+12,
        -2.86220611e+12,  -3.88076540e+12,  -1.19593236e+12,
         1.16313815e+12,  -1.41081942e+12,   3.56349490e+12,
         7.12345817e+11,   4.76398301e+12,   2.60002802e+12,
         1.84224334e+12,   3.06318514e+12,  -1.33316411e+12,
         6.18515991e+11,  -2.64566982e+12,  -1.01426612e+12,
        -4.76745537e+12,  -3.59229268e+12,  -1.68056493e+12,
        -3.57479576e+12,   2.06628597e+12,  -6.07535225e+11,
         3.40447747e+12,   3.42181114e+12,   3.31401269e+12,
         4.92289470e+12,   3.79997144e+11,   1.34187245e+12,
        -3.34878935e+12,  -2.07865993e+12,  -3.24636729e+12,
        -5.48901934e+12,   5.87221409e+11,  -2.27318240e+12,
         2.60029053e+12,   8.21819706e+12,   4.79214839e+10,
        -3.11436331e+12,  -6.27732007e+11])
"""

 上式通常称为 岭回归 Ridge Regression

06 岭回归

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(42)
x = np.random.uniform(-3, 3, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x + 3 + np.random.normal(0, 1, size=100)

plt.scatter(x, y)
plt.show()

from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
​
lin_reg = LinearRegression()
def PolynomialRegression(degree):
    # 传入每一步骤所对应的类 1.多项式的特征 2.数据归一化 3.线性回归
    return Pipeline([
        ("poly", PolynomialFeatures(degree=degree)),
        ("std_scaler", StandardScaler()),
        ("lin_reg", lin_reg)
    ])

from sklearn.model_selection import train_test_split
​
np.random.seed(666)
X_train, X_test, y_train, y_test = train_test_split(X, y)

from sklearn.metrics import mean_squared_error
​
poly_reg = PolynomialRegression(degree=20)
poly_reg.fit(X_train, y_train)
​
y_poly_predict = poly_reg.predict(X_test)
mean_squared_error(y_test, y_poly_predict)
# Out[6]:
# 167.94010867755134

X_plot = np.linspace(-3, 3, 100).reshape(100, 1)
y_plot = poly_reg.predict(X_plot)
​
plt.scatter(x, y)
plt.plot(X_plot[:,0], y_plot, color='r')
plt.axis([-3, 3, 0, 6])
plt.show()

# 将绘制模型预测曲线的方法封装起来
def plot_model(model):
    X_plot = np.linspace(-3, 3, 100).reshape(100, 1)
    y_plot = model.predict(X_plot)
​
    plt.scatter(x, y)
    plt.plot(X_plot[:,0], y_plot, color='r')
    plt.axis([-3, 3, 0, 6])
    plt.show()
    
plot_model(poly_reg)

使用岭回归

from sklearn.linear_model import Ridge
​
# 封装岭回归的过程
def RidgeRegression(degree, alpha):
    return Pipeline([
        ("poly", PolynomialFeatures(degree=degree)),
        ("std_scaler", StandardScaler()),
        ("ridge_reg", Ridge(alpha=alpha))
    ])

# 由于后面那一项是平方和的累加较大,我们可以将alpha取的小一点
ridge1_reg = RidgeRegression(20, 0.0001)
ridge1_reg.fit(X_train, y_train)
​
y1_predict = ridge1_reg.predict(X_test)
mean_squared_error(y_test, y1_predict)
# Out[10]:
# 1.3233492753969822

# 与之前方法相比,曲线的平滑程度更好
plot_model(ridge1_reg)

ridge2_reg = RidgeRegression(20, 1)
ridge2_reg.fit(X_train, y_train)
​
y2_predict = ridge2_reg.predict(X_test)
mean_squared_error(y_test, y2_predict)
# Out[12]:
# 1.1888759304218468

plot_model(ridge2_reg)

ridge3_reg = RidgeRegression(20, 100)
ridge3_reg.fit(X_train, y_train)
​
y3_predict = ridge3_reg.predict(X_test)
mean_squared_error(y_test, y3_predict)
# Out[14]:
# 1.3196456113086197

plot_model(ridge3_reg)

# alpha过大则变成优化后面一项,使得所有的seita都为0
ridge4_reg = RidgeRegression(20, 10000000)
ridge4_reg.fit(X_train, y_train)
​
y4_predict = ridge4_reg.predict(X_test)
mean_squared_error(y_test, y4_predict)
# Out[16]:
# 1.8408455590998372

plot_model(ridge4_reg)

在如何表达theta最小的问题上,选择另一种指标。

07 LASSO

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(42)
x = np.random.uniform(-3.0, 3.0, size=100)
X = x.reshape(-1, 1)
y = 0.5 * x + 3 + np.random.normal(0, 1, size=100)

plt.scatter(x, y)
plt.show()

from sklearn.model_selection import train_test_split
​
np.random.seed(666)
X_train, X_test, y_train, y_test = train_test_split(X, y)

from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler
​
lin_reg = LinearRegression()
def PolynomialRegression(degree):
    # 传入每一步骤所对应的类 1.多项式的特征 2.数据归一化 3.线性回归
    return Pipeline([
        ("poly", PolynomialFeatures(degree=degree)),
        ("std_scaler", StandardScaler()),
        ("lin_reg", lin_reg)
    ])

from sklearn.metrics import mean_squared_error
​
poly_reg = PolynomialRegression(degree=20)
poly_reg.fit(X_train, y_train)
​
y_poly_predict = poly_reg.predict(X_test)
mean_squared_error(y_test, y_poly_predict)
# Out[6]:
# 167.94010867755134

# 绘制模型对应的曲线
def plot_model(model):
    X_plot = np.linspace(-3, 3, 100).reshape(100, 1)
    y_plot = model.predict(X_plot)
​
    plt.scatter(x, y)
    plt.plot(X_plot[:,0], y_plot, color='r')
    plt.axis([-3, 3, 0, 6])
    plt.show()
    
plot_model(poly_reg)

 LASSO

from sklearn.linear_model import Lasso
​
def LassoRegression(degree, alpha):
    # 传入每一步骤所对应的类 1.多项式的特征 2.数据归一化 3.线性回归
    return Pipeline([
        ("poly", PolynomialFeatures(degree=degree)),
        ("std_scaler", StandardScaler()),
        ("lasso_reg", Lasso(alpha=alpha))
    ])

lasso1_reg = LassoRegression(20, 0.01)

lasso1_reg.fit(X_train, y_train)
​
y1_predict = lasso1_reg.predict(X_test)
mean_squared_error(y_test, y1_predict)
# Out[11]:
# 1.1496080843259968

plot_model(lasso1_reg)

lasso2_reg = LassoRegression(20, 0.1)
lasso2_reg.fit(X_train, y_train)
​
y2_predict = lasso2_reg.predict(X_test)
mean_squared_error(y_test, y2_predict)
# Out[13]:
# 1.1213911351818648

plot_model(lasso2_reg)

lasso3_reg = LassoRegression(20, 1)
lasso3_reg.fit(X_train, y_train)
​
y3_predict = lasso3_reg.predict(X_test)
mean_squared_error(y_test, y3_predict)
# Out[15]:
# 1.8408939659515595

plot_model(lasso3_reg)

LASSO趋向于使得一部分theta值变为0.所以可作为特征选择用。

原因如下:

岭回归的梯度求出来和theta有关,是按theta的取值不断下降的。

LASSO的梯度求出来只能取1,-1或0所以只能使用规则的方式下降,在下降时使得某一特征的值变为0。

可以看到,弹性网结合了Ridge和LASSO的优点,但是时间复杂度较高。

最后,欢迎各位读者共同交流,祝好。

猜你喜欢

转载自blog.csdn.net/HNU_Csee_wjw/article/details/88643400