tensorflow Auto-Encoder实现

  1. Auto-Encoder

import  os
import  tensorflow as tf
import  numpy as np
from    tensorflow import keras
from    tensorflow.keras import Sequential, layers
from    PIL import Image
from    matplotlib import pyplot as plt



tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')


def save_images(imgs, name):
    new_im = Image.new('L', (280, 280))

    index = 0
    for i in range(0, 280, 28):
        for j in range(0, 280, 28):
            im = imgs[index]
            im = Image.fromarray(im, mode='L')
            new_im.paste(im, (i, j))
            index += 1

    new_im.save(name)


h_dim = 20
batchsz = 512
lr = 1e-3


(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
# we do not need label
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batchsz)

print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)



class AE(keras.Model):

    def __init__(self):
        super(AE, self).__init__()

        # Encoders
        self.encoder = Sequential([
            layers.Dense(256, activation=tf.nn.relu),
            layers.Dense(128, activation=tf.nn.relu),
            layers.Dense(h_dim)
        ])

        # Decoders
        self.decoder = Sequential([
            layers.Dense(128, activation=tf.nn.relu),
            layers.Dense(256, activation=tf.nn.relu),
            layers.Dense(784)
        ])


    def call(self, inputs, training=None):
        # [b, 784] => [b, 10]
        h = self.encoder(inputs)
        # [b, 10] => [b, 784]
        x_hat = self.decoder(h)

        return x_hat



model = AE()
model.build(input_shape=(None, 784))
model.summary()

optimizer = tf.optimizers.Adam(lr=lr)

for epoch in range(100):

    for step, x in enumerate(train_db):

        #[b, 28, 28] => [b, 784]
        x = tf.reshape(x, [-1, 784])

        with tf.GradientTape() as tape:
            x_rec_logits = model(x)

            rec_loss = tf.losses.binary_crossentropy(x, x_rec_logits, from_logits=True)
            rec_loss = tf.reduce_mean(rec_loss)

        grads = tape.gradient(rec_loss, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))


        if step % 100 ==0:
            print(epoch, step, float(rec_loss))


        # evaluation
        x = next(iter(test_db))
        logits = model(tf.reshape(x, [-1, 784]))
        x_hat = tf.sigmoid(logits)
        # [b, 784] => [b, 28, 28]
        x_hat = tf.reshape(x_hat, [-1, 28, 28])

        # [b, 28, 28] => [2b, 28, 28]
        x_concat = tf.concat([x, x_hat], axis=0)
        x_concat = x_hat
        x_concat = x_concat.numpy() * 255.
        x_concat = x_concat.astype(np.uint8)
        save_images(x_concat, 'ae_images/rec_epoch_%d.png'%epoch)

2. Variational Auto-Encoder

import  os
import  tensorflow as tf
import  numpy as np
from    tensorflow import keras
from    tensorflow.keras import Sequential, layers
from    PIL import Image
from    matplotlib import pyplot as plt



tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')


def save_images(imgs, name):
    new_im = Image.new('L', (280, 280))

    index = 0
    for i in range(0, 280, 28):
        for j in range(0, 280, 28):
            im = imgs[index]
            im = Image.fromarray(im, mode='L')
            new_im.paste(im, (i, j))
            index += 1

    new_im.save(name)


h_dim = 20
batchsz = 512
lr = 1e-3


(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
# we do not need label
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batchsz)

print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)

z_dim = 10

class VAE(keras.Model):

    def __init__(self):
        super(VAE, self).__init__()

        # Encoder
        self.fc1 = layers.Dense(128)
        self.fc2 = layers.Dense(z_dim) # get mean prediction
        self.fc3 = layers.Dense(z_dim)

        # Decoder
        self.fc4 = layers.Dense(128)
        self.fc5 = layers.Dense(784)

    def encoder(self, x):

        h = tf.nn.relu(self.fc1(x))
        # get mean
        mu = self.fc2(h)
        # get variance
        log_var = self.fc3(h)

        return mu, log_var

    def decoder(self, z):

        out = tf.nn.relu(self.fc4(z))
        out = self.fc5(out)

        return out

    def reparameterize(self, mu, log_var):

        eps = tf.random.normal(log_var.shape)

        std = tf.exp(log_var*0.5)

        z = mu + std * eps
        return z

    def call(self, inputs, training=None):

        # [b, 784] => [b, z_dim], [b, z_dim]
        mu, log_var = self.encoder(inputs)
        # reparameterization trick
        z = self.reparameterize(mu, log_var)

        x_hat = self.decoder(z)

        return x_hat, mu, log_var


model = VAE()
model.build(input_shape=(4, 784))
optimizer = tf.optimizers.Adam(lr)

for epoch in range(1000):

    for step, x in enumerate(train_db):

        x = tf.reshape(x, [-1, 784])

        with tf.GradientTape() as tape:
            x_rec_logits, mu, log_var = model(x)

            rec_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=x, logits=x_rec_logits)
            rec_loss = tf.reduce_sum(rec_loss) / x.shape[0]

            # compute kl divergence (mu, var) ~ N (0, 1)
            # https://stats.stackexchange.com/questions/7440/kl-divergence-between-two-univariate-gaussians
            kl_div = -0.5 * (log_var + 1 - mu**2 - tf.exp(log_var))
            kl_div = tf.reduce_sum(kl_div) / x.shape[0]

            loss = rec_loss + 1. * kl_div

        grads = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))


        if step % 100 == 0:
            print(epoch, step, 'kl div:', float(kl_div), 'rec loss:', float(rec_loss))


    # evaluation
    z = tf.random.normal((batchsz, z_dim))
    logits = model.decoder(z)
    x_hat = tf.sigmoid(logits)
    x_hat = tf.reshape(x_hat, [-1, 28, 28]).numpy() *255.
    x_hat = x_hat.astype(np.uint8)
    save_images(x_hat, './vae_images/sampled_epoch%d.png'%epoch)

    x = next(iter(test_db))
    x = tf.reshape(x, [-1, 784])
    x_hat_logits, _, _ = model(x)
    x_hat = tf.sigmoid(x_hat_logits)
    x_hat = tf.reshape(x_hat, [-1, 28, 28]).numpy() *255.
    x_hat = x_hat.astype(np.uint8)
    save_images(x_hat, './vae_images/rec_epoch%d.png'%epoch)


猜你喜欢

转载自blog.csdn.net/weixin_42529756/article/details/114767102