现代通信原理5.1:信号的希尔伯特变换

1、希尔伯特变换式

  希尔伯特变换是以著名数学家大卫·希尔伯特(David Hilbert)来命名,是信号处理领域里一个重要变换。对于函数 g ( t ) g(t) g(t),其希尔伯特变换 g ^ ( t ) \hat g(t) g^(t)定义为:
(1) g ^ ( t ) = H [ g ( t ) ] = 1 π ∫ − ∞ ∞ g ( τ ) t − τ d τ = g ( t ) ∗ 1 π t \tag{1} \begin{aligned} \hat g(t)&={\mathcal H}[g(t)]\\ &=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{g(\tau)}{t-\tau}d\tau\\ &=g(t)*\frac{1}{\pi t} \end{aligned} g^(t)=H[g(t)]=π1tτg(τ)dτ=g(t)πt1(1)因此,希尔伯特变换结果 g ^ ( t ) \hat g(t) g^(t)可以被看作将信号 g ( t ) g(t) g(t)输入冲激响应为
(2) h Q ( t ) = 1 π t \tag{2} h_Q(t)=\frac{1}{\pi t} hQ(t)=πt1(2)线性时不变系统得到的输出信号。
  进一步,我们可以得到希尔伯特逆变换为
(3) g ( t ) = H − 1 [ g ^ ( t ) ] = 1 π ∫ − ∞ ∞ g ^ ( τ ) t − τ d τ = g ^ ( t ) ∗ ( − 1 π t ) \tag{3} \begin{aligned} g(t)&={\mathcal H}^{-1}[\hat g(t)]\\ &=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{\hat g(\tau)}{t-\tau}d\tau\\ &=\hat g(t)*(-\frac{1}{\pi t}) \end{aligned} g(t)=H1[g^(t)]=π1tτg^(τ)dτ=g^(t)(πt1)(3)同样可以看成将 g ^ ( t ) \hat g(t) g^(t)通过冲激响应为 − 1 π t -\frac{1}{\pi t} πt1的线性时不变系统。这样,我们可以用滤波器来分别实现希尔伯特变换及其逆变换,如图1中(a)、(b)所示。
在这里插入图片描述

图1 用滤波器实现希尔伯特变换与逆变换

2、正交(希尔伯特)滤波器

  我们将 h Q ( t ) = 1 π t h_Q(t)=\frac{1}{\pi t} hQ(t)=πt1称为正交滤波器,它的频率传递函数为
(4) H Q ( f ) = − j s g n ( f ) = { − j ,   f ≥ 0 + j ,   f &lt; 0 \tag{4} H_Q(f)=-j{\rm sgn}(f)=\{ \begin{aligned}-j,\ f\ge 0\\ +j,\ f&lt;0 \end{aligned} HQ(f)=jsgn(f)={ j, f0+j, f<0(4)这里 s g n ( ) \rm sgn() sgn()为符号函数。其幅频与相频特性分别如图2(a)、(b)所示。
在这里插入图片描述

图2

3、信号通过正交滤波器

  下面我们来看正交滤波器输入与输出信号关系。根据时域卷积定理,由于 g ^ ( t ) = g ( t ) ∗ h Q ( t ) \hat g(t)=g(t)*h_Q(t) g^(t)=g(t)hQ(t),我们有
(5) G ^ ( f ) = G ( f ) H Q ( f ) , \tag{5} \hat G(f)=G(f)H_Q(f), G^(f)=G(f)HQ(f)(5)这里, g ^ ( t ) ↔ H . T . G ^ ( f ) \hat g(t)\xleftrightarrow{\mathcal H.T.}\hat G(f) g^(t)H.T. G^(f) g ( t ) ↔ H . T . G ( f ) g(t)\xleftrightarrow{\mathcal H.T.} G(f) g(t)H.T. G(f)。因此,
(6) G ^ ( f ) = G ( f ) ⋅ [ − j s g n ( f ) ] G ( f ) = G ^ ( f ) ⋅ [ j s g n ( f ) ] \tag{6} \begin{aligned} \hat G(f)&amp;=G(f)\cdot [-j{\rm sgn}(f)]\\ G(f)&amp;= \hat G(f)\cdot [j{\rm sgn}(f)] \end{aligned} G^(f)G(f)=G(f)[jsgn(f)]=G^(f)[jsgn(f)](6)从(6)我们可以得到
(7) ∣ G ^ ( f ) ∣ = ∣ G ( f ) ∣ ϕ G ^ ( f ) = ϕ G ( f ) − 9 0 ∘ \tag{7} \begin{aligned} |\hat G(f)|&amp;=|G(f)|\\ \phi_{\hat G}(f)&amp;=\phi_G(f)-90^{\circ} \end{aligned} G^(f)ϕG^(f)=G(f)=ϕG(f)90(7)显然,正交滤波器不改变信号幅值,仅相移 − 9 0 ∘ -90^{\circ} 90

【例1】 求余弦信号 g ( t ) = cos ⁡ 2 π f c t g(t)=\cos 2\pi f_ct g(t)=cos2πfct的希尔伯特变换。
解: g ( t ) g(t) g(t)的希尔伯特变换的傅里叶变换为
G ^ ( f ) = − j s g n ( f ) G ( f ) = − j s g n ( f ) × 1 2 [ δ ( f − f c ) + δ ( f + F c ) ] = 1 j 2 [ δ ( f − f c ) − δ ( f + F c ) ] \begin{aligned} \hat G(f)&amp;=-j{\rm sgn}(f)G(f)\\ &amp;=-j{\rm sgn}(f)\times \frac{1}{2}[\delta(f-f_c)+\delta(f+F_c)]\\ &amp;=\frac{1}{j2}[\delta(f-f_c)-\delta(f+F_c)] \end{aligned} G^(f)=jsgn(f)G(f)=jsgn(f)×21[δ(ffc)+δ(f+Fc)]=j21[δ(ffc)δ(f+Fc)]因此, g ^ ( t ) = sin ⁡ 2 π f c t \hat g(t)=\sin 2\pi f_ct g^(t)=sin2πfct。显然,余弦信号相移 − 9 0 ∘ -90^{\circ} 90为正弦信号。
【例2】求信号 g ( t ) = m ^ ( t ) sin ⁡ 2 π f c t g(t)=\hat m(t)\sin 2\pi f_ct g(t)=m^(t)sin2πfct的傅里叶变换。
解:
m ^ ( t ) ↔ F . T . − j s g n ( f ) M ( f ) g ( t ) = m ^ ( t ) sin ⁡ 2 π f c t ↔ F . T . G ( f ) = [ − j s g n ( f ) M ( f ) ] ∗ 1 j 2 [ δ ( f − f c ) + δ ( f + f c ) ] \begin{aligned} \hat m(t)\xleftrightarrow{\mathcal F.T.}&amp;-j{\rm sgn}(f)M(f)\\ g(t)=\hat m(t)\sin 2\pi f_ct\xleftrightarrow{\mathcal F.T.}&amp;G(f)=[-j{\rm sgn}(f)M(f)]*\frac{1}{j2}[\delta(f-f_c)+\delta(f+f_c)] \end{aligned} m^(t)F.T. g(t)=m^(t)sin2πfctF.T. jsgn(f)M(f)G(f)=[jsgn(f)M(f)]j21[δ(ffc)+δ(f+fc)]因此,有
G ( f ) = 1 2 [ M ( f + f c ) s g n ( f + f c ) − M ( f − f c ) s g n ( f − f c ) ] . G(f)=\frac{1}{2}[M(f+f_c){\rm sgn}(f+f_c)-M(f-f_c){\rm sgn}(f-f_c)]. G(f)=21[M(f+fc)sgn(f+fc)M(ffc)sgn(ffc)].
【例3】求信号 g ( t ) = m ( t ) cos ⁡ 2 π f c t g(t)=m(t)\cos 2\pi f_ct g(t)=m(t)cos2πfct的希尔伯特变换。
解:
g ( t ) = m ( t ) cos ⁡ 2 π f c t G ^ ( f ) = − j s g n ( f ) × 1 2 [ M ( f − f c ) + M ( f + f c ) ] = 1 j 2 [ M ( f − f c ) − M ( f + f c ) ] g ^ ( t ) = m ( t ) sin ⁡ 2 π f c t . \begin{aligned} g(t)&amp;=m(t)\cos 2\pi f_ct\\ \hat G(f)&amp;=-j{\rm sgn}(f)\times \frac{1}{2}[M(f-f_c)+M(f+f_c)]\\ &amp;=\frac{1}{j2}[M(f-f_c)-M(f+f_c)]\\ \hat g(t)&amp;=m(t)\sin 2\pi f_ct. \end{aligned} g(t)G^(f)g^(t)=m(t)cos2πfct=jsgn(f)×21[M(ffc)+M(f+fc)]=j21[M(ffc)M(f+fc)]=m(t)sin2πfct.

猜你喜欢

转载自blog.csdn.net/tanghonghanhaoli/article/details/100901851