高数打卡07

计算下列对坐标的曲线积分:
( 1 ) L x y d x , (1)\oint_{L}xydx, 其中 L L 为圆周 ( x a ) 2 + y 2 = a 2 ( a > 0 ) (x-a)^2+y^2=a^2(a>0) 及x轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);
( 2 ) Γ d x d y + y d z , (2)\oint_{\Gamma}dx-dy+ydz,
其中 Γ \Gamma 为有向折线 A B C A , ABCA, 这里的 A , B , C A,B,C 依次为点 ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) ; (1,0,0),(0,1,0),(0,0,1);
( 3 ) L ( x + y ) d x + ( y x ) d y , (3)\int_{L}(x+y)dx+(y-x)dy, 其中 L L 是曲线 x = 2 t 2 + t + 1 , y = t 2 + 1 , x=2t^2+t+1,y=t^2+1, 从点 ( 1 , 1 ) (1,1) 到点 ( 4 , 2 ) (4,2) 的一段弧.

解:
( 1 ) L (1)L L 1 ( ) L_1(圆弧) L 2 ( 线 ) L_2(直线段) 组成. L 1 L_1 为有向半圆弧:
{ x = a + a c o s t , y = a s i n t , \left\{\begin{aligned} &x=a+acost,\\ &y=asint, \end{aligned}\right.
t t 从0变到 π ; \pi;
L 2 L_2 为有向线段 y = 0 , x y=0,x 0 0 变到 2 a . 2a. 于是
L x y d x = L 1 x y d x + L 2 x y d x = 0 π a ( 1 + c o s t ) a s i n t ( a s i n t ) d t + 0 = a 3 ( 0 π s i n 2 t d t + 0 π s i n 2 t c o s t d t ) = a 3 ( π 2 + 0 ) = π 2 a 3 . \oint_{L}xydx=\int_{L_1}xydx+\int_{L_2}xydx\\ =\int_{0}^{\pi}a(1+cost) \cdot asint \cdot (-asint)dt+0\\ =-a^3(\int_{0}^{\pi}sin^2tdt+\int_{0}^{\pi}sin^2tcostdt)\\ =-a^3(\frac{\pi}{2}+0)=-\frac{\pi}{2}a^3.\\
( 2 ) (2) Γ \Gamma 由有向线段AB,BC,CA依次连接而成,其中
A B : x = 1 t , y = t , z = 0 , t 0 1 ; B C : x = 0 , y = 1 t , z = t , t 0 1 ; C A : x = t , y = 0 , z = 1 t , t 0 1 : AB:x=1-t,y=t,z=0,t从0变到1;\\ BC:x=0,y=1-t,z=t,t从0变到1;\\ CA:x=t,y=0,z=1-t,t从0变到1:\\
A B d x d y + y d z = 0 1 [ ( 1 ) 1 + 0 ] d t = 2 , B C d x d y + y d z = 0 1 [ 0 ( 1 ) + ( 1 t ) 1 ] d t = 0 1 ( 2 t ) d t = 3 2 , C A d x d y + y d z = 0 1 ( 1 0 + 0 ) d t = 1 , \int_{AB}dx-dy+ydz=\int_{0}^{1}[(-1)-1+0]dt=-2,\\ \int_{BC}dx-dy+ydz=\int_{0}^{1}[0-(-1)+(1-t) \cdot 1]dt=\int_{0}^{1}(2-t)dt=\frac{3}{2},\\ \int_{CA}dx-dy+ydz=\int_{0}^{1}(1-0+0)dt=1,
因此
Γ d x d y + y d z = 2 + 3 2 + 1 = 1 2 . \oint_{\Gamma}dx-dy+ydz=-2+\frac{3}{2}+1=\frac{1}{2}.
( 3 ) (3) { 2 t 2 + t + 1 = 1 , t 2 + 1 = 1 \left\{\begin{aligned} &2t^2+t+1=1,\\ &t^2+1=1\\ \end{aligned} \right.
可得 t = 0 ; t=0;
{ 2 t 2 + t + 1 = 4 , t 2 + 1 = 2 \left\{\begin{aligned} &2t^2+t+1=4,\\ &t^2+1=2\\ \end{aligned} \right.
可得 t = 1 ; t=1;
因此
L ( x + y ) d x + ( y x ) d y = 0 1 [ 2 t 2 + t + 1 + t 2 + 1 ) ( 4 t + 1 ) + ( t 2 + 1 2 t 2 t 1 ) 2 t ] d t = 0 1 ( 10 t 3 + 5 t 2 + 9 t + 2 ) d t = 32 3 . \int_{L}(x+y)dx+(y-x)dy=\int_{0}^{1}[2t^2+t+1+t^2+1) \cdot (4t+1)+(t^2+1-2t^2-t-1) \cdot 2t]dt \\ =\int_{0}^{1}(10t^3+5t^2+9t+2)dt=\frac{32}{3}.

发布了245 篇原创文章 · 获赞 255 · 访问量 1万+

猜你喜欢

转载自blog.csdn.net/qq_45645641/article/details/105665984