级数与反常积分(1)

级数与反常积分(1)

Thm\(f(x)\)\([1,+\infty)\) 上连续可微且 \(\displaystyle\int_{1}^{+\infty}|f'(x)|\mathrm{d}x\) 收敛,则 \(\displaystyle\int_{1}^{+\infty}f(x)\mathrm{d}x\)\(\displaystyle\sum_{n=1}^{+\infty}f(n)\) 同敛散.

pf. 根据 \(\displaystyle\int_{1}^{+\infty}|f'(x)|\mathrm{d}x\) 收敛以及简单的计算

\[\begin{align}\Big|\int_{k}^{k+1}f(x)\mathrm{d}x-f(k)\Big|&=\Big|\int_{k}^{k+1}[f(x)-f(k)]\mathrm{d}x\Big|\\&=\Big|\int_{k}^{k+1}\bigg(\int_{k}^{x}f'(t)\mathrm{d}t\bigg)\mathrm{d}x\Big|\\&\le \int_{k}^{k+1}\bigg(\int_{k}^{x}\big|f'(t)\big|\mathrm{d}t\bigg)\mathrm{d}x\\&\le \int_{k}^{k+1}\bigg(\int_{k}^{k+1}\big|f'(t)\big|\mathrm{d}t\bigg)\mathrm{d}x\\&= \int_{k}^{k+1}\big|f'(x)\big|\mathrm{d}x\\\end{align} \]

可知存在极限 \(\displaystyle\lim\limits_{n\to\infty}\Big(S_n-\int_{1}^{n}f(x)\mathrm{d}x\Big)\) . 因此 \(\displaystyle\int_{1}^{+\infty}f(x)\mathrm{d}x\)\(\displaystyle\sum_{n=1}^{+\infty}f(n)\) 同敛散.\(\quad\Box\)

Alternative pf.\(\displaystyle\int_{1}^{+\infty}f(x)\mathrm{d}x\) 收敛. 记 \(\displaystyle S_n=\sum_{k=1}^{n}f(k)\). 使用 \(Abel\) 变换和分部积分,

\[\begin{align} S_n&=nf(n)-\sum_{k=1}^{n-1}k[f(k+1)-f(k)]\\ &=f(1)+\int_{1}^{n}\frac{\mathrm{d}}{\mathrm{d}x}(xf(x))\mathrm{d}x-\sum_{k=1}^{n-1}\int_{k}^{k+1}\lfloor x \rfloor f'(x)\mathrm{d}x\\ &=f(1)+\int_{1}^{n}f(x)\mathrm{d}x+\int_{1}^{n}xf'(x)\mathrm{d}x-\int_{1}^{n}\lfloor x \rfloor f'(x)\mathrm{d}x \end{align} \]

因此有 \(\displaystyle S_n-\int_{1}^{n}f(x)\mathrm{d}x=f(1)+\int_{1}^{n}(x-\lfloor x \rfloor)f'(x)\mathrm{d}x\).

由于 \(\big|(x-\lfloor x \rfloor)f'(x)\big|\le\big|f'(x)\big|\),上式右端的积分收敛,因此极限 \(\displaystyle\lim\limits_{n\to\infty}\Big(S_n-\int_{1}^{n}f(x)\mathrm{d}x\Big)\) 存在.

因此 \(\displaystyle\int_{1}^{+\infty}f(x)\mathrm{d}x\)\(\displaystyle\sum_{n=1}^{+\infty}f(n)\) 同敛散.\(\quad\Box\)


Application\(p\in(0,1]\),证明 \(\displaystyle\sum_{n=1}^{+\infty}\frac{\cos(\ln n)}{n^p}\) 发散.

pf.\(\displaystyle f(x)=\frac{\cos(\ln x)}{x^p}\)\(x\in[1,+\infty)\).

\(\displaystyle f'(x)=-\frac{\sin(\ln x)}{x^{2p+1}}-\frac{p\cos(\ln x)}{x^{p+1}}\)\(\displaystyle\big|f'(x)\big|\le\frac{1}{x^{2p+1}}+\frac{p}{x^{p+1}}\),从而 \(\displaystyle\int_{1}^{+\infty}|f'(x)|\mathrm{d}x\) 收敛.

由上面的定理,只要证明 \(\displaystyle\int_{1}^{+\infty}f(x)\mathrm{d}x\) 发散. 换元 \(x=e^t\),则

\[\displaystyle\int_{1}^{+\infty}\frac{\cos(\ln x)}{x^p}\mathrm{d}x=\int_{0}^{+\infty}e^{(1-p)t}\cos{t}\,\mathrm{d}t \]

由学不定积分的时候做过的某道习题有

\[\int e^{(1-p)t}\cos{t}\,\mathrm{d}t=\frac{e^{(1-p)t}\big((1-p)\cos{t}+\sin{t}\big)}{(1-p)^2+1}+C \]

因为极限 \(\displaystyle\lim\limits_{t\to+\infty}\frac{e^{(1-p)t}\big((1-p)\cos{t}+\sin{t}\big)}{(1-p)^2+1}\) 不存在 (对 \(p=1\)\(0<p<1\) 两种情况分别考虑),所以 \(\displaystyle\int_{0}^{+\infty}e^{(1-p)t}\cos{t}\,\mathrm{d}t\) 发散,故证. \(\quad\Box\)

Alternative pf. 这个证法是比较自然的 (4.11习题课上学长讲的方法).

核心的观察是 \(\{\ln n\}\) 在数轴上的分布向右会越来越密. 所以我们考虑集中在 \(\displaystyle (2k\pi-\frac{\pi}{4},2k\pi+\frac{\pi}{4})\) 中的 \(\ln n\),用柯西准则.

对任意正整数 \(k\)

\[\begin{align}\Big|\sum_{\small{2k\pi-\frac{\pi}{4}<\,\ln n\,<2k\pi+\frac{\pi}{4}}}\frac{\cos(\ln n)}{n^p}\,\Big|&\ge\cos{\left(\frac{\pi}{4}\right)}\cdot\frac{1}{\big(e^{2k\pi+\frac{\pi}{4}}\big)^p}\cdot \bigg|e^{2k\pi+\frac{\pi}{4}}-e^{2k\pi-\frac{\pi}{4}}-2\bigg|\\&=\frac{\sqrt{2}}{2}\,e^{2k\pi(1-p)}\,e^{-\frac{\pi}{4}p}\cdot\Big|e^{\frac{\pi}{4}}-e^{\frac{-\pi}{4}}-2e^{-2k\pi}\Big|\\&\ge\frac{\sqrt{2}}{2}\,e^{-\frac{\pi}{4}p}\,(e^{\frac{\pi}{4}}-1)\end{align} \]

由柯西准则知级数 \(\displaystyle\sum_{n=1}^{+\infty}\frac{\cos(\ln n)}{n^p}\) 发散. \(\quad\Box\)

猜你喜欢

转载自www.cnblogs.com/chs2020/p/12682034.html