tensorflow实现迁移学习

此例程出自《TensorFlow实战Google深度学习框架》6.5.2小节 卷积神经网络迁移学习。
数据集来自http://download.tensorflow.org/example_images/flower_photos.tgz ,及谷歌提供的Inception-v3模型https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip 。 自行下载和解压。
解压后的文件夹包含5个子文件夹,每个子文件夹的名称为一种花的名称,代表了不同的类别。
工程目录:

-transfer_learning
    -flower_data  //存放原始图片的文件夹,有5个子文件夹, 每个子文件夹的名称为一种花的名称
        -daisy   //daisy类花图片的文件夹
        -dandelion
        -roses
        -sunflowers
        -tulips
        -LICENSE.txt
    -model   //存放模型的文件夹
        -imagenet_comp_graph_label_strings.txt
        -LICENSE
        -tensorflow_inception_graph.pb   //模型文件
    -tmp
        -bottleneck  //保存模型瓶颈层的特征结果
            -daisy   //daisy类花特征的文件夹
            -dandelion
            -roses
            -sunflowers
            -tulips
    -transfer_flower.py  //所有的程序都在这里了
    
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

代码实现

transfer_flower.py

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import glob
import os.path
import random
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile

# Inception-v3模型瓶颈层的节点个数
BOTTLENECK_TENSOR_SIZE = 2048

# Inception-v3模型中代表瓶颈层结果的张量名称。
# 在谷歌提出的Inception-v3模型中,这个张量名称就是'pool_3/_reshape:0'。
# 在训练模型时,可以通过tensor.name来获取张量的名称。
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'

# 图像输入张量所对应的名称。
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'

# 下载的谷歌训练好的Inception-v3模型文件目录
MODEL_DIR = 'model/'

# 下载的谷歌训练好的Inception-v3模型文件名
MODEL_FILE = 'tensorflow_inception_graph.pb'

# 因为一个训练数据会被使用多次,所以可以将原始图像通过Inception-v3模型计算得到的特征向量保存在文件中,免去重复的计算。
# 下面的变量定义了这些文件的存放地址。
CACHE_DIR = 'tmp/bottleneck/'

# 图片数据文件夹。
# 在这个文件夹中每一个子文件夹代表一个需要区分的类别,每个子文件夹中存放了对应类别的图片。
INPUT_DATA = 'flower_data/'

# 验证的数据百分比
VALIDATION_PERCENTAGE = 10
# 测试的数据百分比
TEST_PERCENTAGE = 10

# 定义神经网络的设置
LEARNING_RATE = 0.01
STEPS = 4000
BATCH = 100

# 这个函数从数据文件夹中读取所有的图片列表并按训练、验证、测试数据分开。
# testing_percentage和validation_percentage参数指定了测试数据集和验证数据集的大小。
def create_image_lists(testing_percentage, validation_percentage):
    # 得到的所有图片都存在result这个字典(dictionary)里。
    # 这个字典的key为类别的名称,value也是一个字典,字典里存储了所有的图片名称。
    result = {}
    # 获取当前目录下所有的子目录
    sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]
    # 得到的第一个目录是当前目录,不需要考虑
    is_root_dir = True
    for sub_dir in sub_dirs:
        if is_root_dir:
            is_root_dir = False
            continue

        # 获取当前目录下所有的有效图片文件。
        extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
        file_list = []
        dir_name = os.path.basename(sub_dir)
        for extension in extensions:
            file_glob = os.path.join(INPUT_DATA, dir_name, '*.'+extension)
            file_list.extend(glob.glob(file_glob))
        if not file_list:
            continue

        # 通过目录名获取类别的名称。
        label_name = dir_name.lower()
        # 初始化当前类别的训练数据集、测试数据集和验证数据集
        training_images = []
        testing_images = []
        validation_images = []
        for file_name in file_list:
            base_name = os.path.basename(file_name)
            # 随机将数据分到训练数据集、测试数据集和验证数据集。
            chance = np.random.randint(100)
            if chance < validation_percentage:
                validation_images.append(base_name)
            elif chance < (testing_percentage + validation_percentage):
                testing_images.append(base_name)
            else:
                training_images.append(base_name)

        # 将当前类别的数据放入结果字典。
        result[label_name] = {
            'dir': dir_name,
            'training': training_images,
            'testing': testing_images,
            'validation': validation_images
            }
    # 返回整理好的所有数据
    return result


# 这个函数通过类别名称、所属数据集和图片编号获取一张图片的地址。
# image_lists参数给出了所有图片信息。
# image_dir参数给出了根目录。存放图片数据的根目录和存放图片特征向量的根目录地址不同。
# label_name参数给定了类别的名称。
# index参数给定了需要获取的图片的编号。
# category参数指定了需要获取的图片是在训练数据集、测试数据集还是验证数据集。
def get_image_path(image_lists, image_dir, label_name, index, category):
    # 获取给定类别中所有图片的信息。
    label_lists = image_lists[label_name]
    # 根据所属数据集的名称获取集合中的全部图片信息。
    category_list = label_lists[category]
    mod_index = index % len(category_list)
    # 获取图片的文件名。
    base_name = category_list[mod_index]
    sub_dir = label_lists['dir']
    # 最终的地址为数据根目录的地址 + 类别的文件夹 + 图片的名称
    full_path = os.path.join(image_dir, sub_dir, base_name)
    return full_path


# 这个函数通过类别名称、所属数据集和图片编号获取经过Inception-v3模型处理之后的特征向量文件地址。
def get_bottlenect_path(image_lists, label_name, index, category):
    return get_image_path(image_lists, CACHE_DIR, label_name, index, category) + '.txt';


# 这个函数使用加载的训练好的Inception-v3模型处理一张图片,得到这个图片的特征向量。
def run_bottleneck_on_image(sess, image_data, image_data_tensor, bottleneck_tensor):
    # 这个过程实际上就是将当前图片作为输入计算瓶颈张量的值。这个瓶颈张量的值就是这张图片的新的特征向量。
    bottleneck_values = sess.run(bottleneck_tensor, {image_data_tensor: image_data})
    # 经过卷积神经网络处理的结果是一个四维数组,需要将这个结果压缩成一个特征向量(一维数组)
    bottleneck_values = np.squeeze(bottleneck_values)
    return bottleneck_values


# 这个函数获取一张图片经过Inception-v3模型处理之后的特征向量。
# 这个函数会先试图寻找已经计算且保存下来的特征向量,如果找不到则先计算这个特征向量,然后保存到文件。
def get_or_create_bottleneck(sess, image_lists, label_name, index, category, jpeg_data_tensor, bottleneck_tensor):
    # 获取一张图片对应的特征向量文件的路径。
    label_lists = image_lists[label_name]
    sub_dir = label_lists['dir']
    sub_dir_path = os.path.join(CACHE_DIR, sub_dir)
    if not os.path.exists(sub_dir_path):
        os.makedirs(sub_dir_path)
    bottleneck_path = get_bottlenect_path(image_lists, label_name, index, category)
    # 如果这个特征向量文件不存在,则通过Inception-v3模型来计算特征向量,并将计算的结果存入文件。
    if not os.path.exists(bottleneck_path):
        # 获取原始的图片路径
        image_path = get_image_path(image_lists, INPUT_DATA, label_name, index, category)
        # 获取图片内容。
        image_data = gfile.FastGFile(image_path, 'rb').read()
        # print(len(image_data))
        # 由于输入的图片大小不一致,此处得到的image_data大小也不一致(已验证),但却都能通过加载的inception-v3模型生成一个2048的特征向量。具体原理不详。
        # 通过Inception-v3模型计算特征向量
        bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, bottleneck_tensor)
        # 将计算得到的特征向量存入文件
        bottleneck_string = ','.join(str(x) for x in bottleneck_values)
        with open(bottleneck_path, 'w') as bottleneck_file:
            bottleneck_file.write(bottleneck_string)
    else:
        # 直接从文件中获取图片相应的特征向量。
        with open(bottleneck_path, 'r') as bottleneck_file:
            bottleneck_string = bottleneck_file.read()
        bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
    # 返回得到的特征向量
    return bottleneck_values


# 这个函数随机获取一个batch的图片作为训练数据。
def get_random_cached_bottlenecks(sess, n_classes, image_lists, how_many, category,
                                  jpeg_data_tensor, bottleneck_tensor):
    bottlenecks = []
    ground_truths = []
    for _ in range(how_many):
        # 随机一个类别和图片的编号加入当前的训练数据。
        label_index = random.randrange(n_classes)
        label_name = list(image_lists.keys())[label_index]
        image_index = random.randrange(65536)
        bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, image_index, category,
                                              jpeg_data_tensor, bottleneck_tensor)
        ground_truth = np.zeros(n_classes, dtype=np.float32)
        ground_truth[label_index] = 1.0
        bottlenecks.append(bottleneck)
        ground_truths.append(ground_truth)
    return bottlenecks, ground_truths


# 这个函数获取全部的测试数据。在最终测试的时候需要在所有的测试数据上计算正确率。
def get_test_bottlenecks(sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor):
    bottlenecks = []
    ground_truths = []
    label_name_list = list(image_lists.keys())
    # 枚举所有的类别和每个类别中的测试图片。
    for label_index, label_name in enumerate(label_name_list):
        category = 'testing'
        for index, unused_base_name in enumerate(image_lists[label_name][category]):
            # 通过Inception-v3模型计算图片对应的特征向量,并将其加入最终数据的列表。
            bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, index, category,
                                                  jpeg_data_tensor, bottleneck_tensor)
            ground_truth = np.zeros(n_classes, dtype = np.float32)
            ground_truth[label_index] = 1.0
            bottlenecks.append(bottleneck)
            ground_truths.append(ground_truth)
    return bottlenecks, ground_truths


def main(_):
    # 读取所有图片。
    image_lists = create_image_lists(TEST_PERCENTAGE, VALIDATION_PERCENTAGE)
    n_classes = len(image_lists.keys())
    # 读取已经训练好的Inception-v3模型。
    # 谷歌训练好的模型保存在了GraphDef Protocol Buffer中,里面保存了每一个节点取值的计算方法以及变量的取值。
    # TensorFlow模型持久化的问题在第5章中有详细的介绍。
    with gfile.FastGFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    # 加载读取的Inception-v3模型,并返回数据输入所对应的张量以及计算瓶颈层结果所对应的张量。
    bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(graph_def, return_elements=[BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME])
    # 定义新的神经网络输入,这个输入就是新的图片经过Inception-v3模型前向传播到达瓶颈层时的结点取值。
    # 可以将这个过程类似的理解为一种特征提取。
    bottleneck_input = tf.placeholder(tf.float32, [None, BOTTLENECK_TENSOR_SIZE], name='BottleneckInputPlaceholder')
    # 定义新的标准答案输入
    ground_truth_input = tf.placeholder(tf.float32, [None, n_classes], name='GroundTruthInput')
    # 定义一层全连接层来解决新的图片分类问题。
    # 因为训练好的Inception-v3模型已经将原始的图片抽象为了更加容易分类的特征向量了,所以不需要再训练那么复杂的神经网络来完成这个新的分类任务。
    with tf.name_scope('final_training_ops'):
        weights = tf.Variable(tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, n_classes], stddev=0.001))
        biases = tf.Variable(tf.zeros([n_classes]))
        logits = tf.matmul(bottleneck_input, weights) + biases
        final_tensor = tf.nn.softmax(logits)
    # 定义交叉熵损失函数
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=ground_truth_input)
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy_mean)
    # 计算正确率
    with tf.name_scope('evaluation'):
        correct_prediction = tf.equal(tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))
        evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        # 训练过程
        for i in range(STEPS):
            # 每次获取一个batch的训练数据
            train_bottlenecks, train_ground_truth = get_random_cached_bottlenecks(
                sess, n_classes, image_lists, BATCH, 'training', jpeg_data_tensor, bottleneck_tensor)
            sess.run(train_step, feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth})
            # 在验证集上测试正确率。
            if i%100 == 0 or i+1 == STEPS:
                validation_bottlenecks, validation_ground_truth = get_random_cached_bottlenecks(
                    sess, n_classes, image_lists, BATCH, 'validation', jpeg_data_tensor, bottleneck_tensor)
                validation_accuracy = sess.run(evaluation_step, feed_dict={
                    bottleneck_input:validation_bottlenecks, ground_truth_input: validation_ground_truth})
                print('Step %d: Validation accuracy on random sampled %d examples = %.1f%%'
                      % (i, BATCH, validation_accuracy*100))
        # 在最后的测试数据上测试正确率
        test_bottlenecks, test_ground_truth = get_test_bottlenecks(sess, image_lists, n_classes,
                                                                       jpeg_data_tensor, bottleneck_tensor)
        test_accuracy = sess.run(evaluation_step, feed_dict={bottleneck_input: test_bottlenecks,
                                                                 ground_truth_input: test_ground_truth})
        print('Final test accuracy = %.1f%%' % (test_accuracy * 100))


if __name__ == '__main__':
    tf.app.run()
    
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262

实验及分析

  1. 训练及测试结果
    这里写图片描述
    2.代码疑问
    不知道大家有注意到没有,数据集里给的是不同大小的图片,而程序里却可以直接送入Inception-v3模型,从而得到同样尺寸的结果特征向量。我在书籍的github上问了这个问题,得到的回复是:Inception-v3模型中包含了图像预处理和大小调整的部分。目前并没有往下继续考究。原问题详见:caicloud/tensorflow-tutorial第6章迁移学习例程疑问
(function () { ('pre.prettyprint code').each(function () { var lines = (this).text().split(\n).length;var numbering = $('
    ').addClass('pre-numbering').hide(); (this).addClass(hasnumbering).parent().append( numbering); for (i = 1; i

    此例程出自《TensorFlow实战Google深度学习框架》6.5.2小节 卷积神经网络迁移学习。
    数据集来自http://download.tensorflow.org/example_images/flower_photos.tgz ,及谷歌提供的Inception-v3模型https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip 。 自行下载和解压。
    解压后的文件夹包含5个子文件夹,每个子文件夹的名称为一种花的名称,代表了不同的类别。
    工程目录:

    -transfer_learning
        -flower_data  //存放原始图片的文件夹,有5个子文件夹, 每个子文件夹的名称为一种花的名称
            -daisy   //daisy类花图片的文件夹
            -dandelion
            -roses
            -sunflowers
            -tulips
            -LICENSE.txt
        -model   //存放模型的文件夹
            -imagenet_comp_graph_label_strings.txt
            -LICENSE
            -tensorflow_inception_graph.pb   //模型文件
        -tmp
            -bottleneck  //保存模型瓶颈层的特征结果
                -daisy   //daisy类花特征的文件夹
                -dandelion
                -roses
                -sunflowers
                -tulips
        -transfer_flower.py  //所有的程序都在这里了
      
      
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    代码实现

    transfer_flower.py

    #!/usr/bin/env python3
    # -*- coding: utf-8 -*-
    
    import glob
    import os.path
    import random
    import numpy as np
    import tensorflow as tf
    from tensorflow.python.platform import gfile
    
    # Inception-v3模型瓶颈层的节点个数
    BOTTLENECK_TENSOR_SIZE = 2048
    
    # Inception-v3模型中代表瓶颈层结果的张量名称。
    # 在谷歌提出的Inception-v3模型中,这个张量名称就是'pool_3/_reshape:0'。
    # 在训练模型时,可以通过tensor.name来获取张量的名称。
    BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
    
    # 图像输入张量所对应的名称。
    JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'
    
    # 下载的谷歌训练好的Inception-v3模型文件目录
    MODEL_DIR = 'model/'
    
    # 下载的谷歌训练好的Inception-v3模型文件名
    MODEL_FILE = 'tensorflow_inception_graph.pb'
    
    # 因为一个训练数据会被使用多次,所以可以将原始图像通过Inception-v3模型计算得到的特征向量保存在文件中,免去重复的计算。
    # 下面的变量定义了这些文件的存放地址。
    CACHE_DIR = 'tmp/bottleneck/'
    
    # 图片数据文件夹。
    # 在这个文件夹中每一个子文件夹代表一个需要区分的类别,每个子文件夹中存放了对应类别的图片。
    INPUT_DATA = 'flower_data/'
    
    # 验证的数据百分比
    VALIDATION_PERCENTAGE = 10
    # 测试的数据百分比
    TEST_PERCENTAGE = 10
    
    # 定义神经网络的设置
    LEARNING_RATE = 0.01
    STEPS = 4000
    BATCH = 100
    
    # 这个函数从数据文件夹中读取所有的图片列表并按训练、验证、测试数据分开。
    # testing_percentage和validation_percentage参数指定了测试数据集和验证数据集的大小。
    def create_image_lists(testing_percentage, validation_percentage):
        # 得到的所有图片都存在result这个字典(dictionary)里。
        # 这个字典的key为类别的名称,value也是一个字典,字典里存储了所有的图片名称。
        result = {}
        # 获取当前目录下所有的子目录
        sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]
        # 得到的第一个目录是当前目录,不需要考虑
        is_root_dir = True
        for sub_dir in sub_dirs:
            if is_root_dir:
                is_root_dir = False
                continue
    
            # 获取当前目录下所有的有效图片文件。
            extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
            file_list = []
            dir_name = os.path.basename(sub_dir)
            for extension in extensions:
                file_glob = os.path.join(INPUT_DATA, dir_name, '*.'+extension)
                file_list.extend(glob.glob(file_glob))
            if not file_list:
                continue
    
            # 通过目录名获取类别的名称。
            label_name = dir_name.lower()
            # 初始化当前类别的训练数据集、测试数据集和验证数据集
            training_images = []
            testing_images = []
            validation_images = []
            for file_name in file_list:
                base_name = os.path.basename(file_name)
                # 随机将数据分到训练数据集、测试数据集和验证数据集。
                chance = np.random.randint(100)
                if chance < validation_percentage:
                    validation_images.append(base_name)
                elif chance < (testing_percentage + validation_percentage):
                    testing_images.append(base_name)
                else:
                    training_images.append(base_name)
    
            # 将当前类别的数据放入结果字典。
            result[label_name] = {
                'dir': dir_name,
                'training': training_images,
                'testing': testing_images,
                'validation': validation_images
                }
        # 返回整理好的所有数据
        return result
    
    
    # 这个函数通过类别名称、所属数据集和图片编号获取一张图片的地址。
    # image_lists参数给出了所有图片信息。
    # image_dir参数给出了根目录。存放图片数据的根目录和存放图片特征向量的根目录地址不同。
    # label_name参数给定了类别的名称。
    # index参数给定了需要获取的图片的编号。
    # category参数指定了需要获取的图片是在训练数据集、测试数据集还是验证数据集。
    def get_image_path(image_lists, image_dir, label_name, index, category):
        # 获取给定类别中所有图片的信息。
        label_lists = image_lists[label_name]
        # 根据所属数据集的名称获取集合中的全部图片信息。
        category_list = label_lists[category]
        mod_index = index % len(category_list)
        # 获取图片的文件名。
        base_name = category_list[mod_index]
        sub_dir = label_lists['dir']
        # 最终的地址为数据根目录的地址 + 类别的文件夹 + 图片的名称
        full_path = os.path.join(image_dir, sub_dir, base_name)
        return full_path
    
    
    # 这个函数通过类别名称、所属数据集和图片编号获取经过Inception-v3模型处理之后的特征向量文件地址。
    def get_bottlenect_path(image_lists, label_name, index, category):
        return get_image_path(image_lists, CACHE_DIR, label_name, index, category) + '.txt';
    
    
    # 这个函数使用加载的训练好的Inception-v3模型处理一张图片,得到这个图片的特征向量。
    def run_bottleneck_on_image(sess, image_data, image_data_tensor, bottleneck_tensor):
        # 这个过程实际上就是将当前图片作为输入计算瓶颈张量的值。这个瓶颈张量的值就是这张图片的新的特征向量。
        bottleneck_values = sess.run(bottleneck_tensor, {image_data_tensor: image_data})
        # 经过卷积神经网络处理的结果是一个四维数组,需要将这个结果压缩成一个特征向量(一维数组)
        bottleneck_values = np.squeeze(bottleneck_values)
        return bottleneck_values
    
    
    # 这个函数获取一张图片经过Inception-v3模型处理之后的特征向量。
    # 这个函数会先试图寻找已经计算且保存下来的特征向量,如果找不到则先计算这个特征向量,然后保存到文件。
    def get_or_create_bottleneck(sess, image_lists, label_name, index, category, jpeg_data_tensor, bottleneck_tensor):
        # 获取一张图片对应的特征向量文件的路径。
        label_lists = image_lists[label_name]
        sub_dir = label_lists['dir']
        sub_dir_path = os.path.join(CACHE_DIR, sub_dir)
        if not os.path.exists(sub_dir_path):
            os.makedirs(sub_dir_path)
        bottleneck_path = get_bottlenect_path(image_lists, label_name, index, category)
        # 如果这个特征向量文件不存在,则通过Inception-v3模型来计算特征向量,并将计算的结果存入文件。
        if not os.path.exists(bottleneck_path):
            # 获取原始的图片路径
            image_path = get_image_path(image_lists, INPUT_DATA, label_name, index, category)
            # 获取图片内容。
            image_data = gfile.FastGFile(image_path, 'rb').read()
            # print(len(image_data))
            # 由于输入的图片大小不一致,此处得到的image_data大小也不一致(已验证),但却都能通过加载的inception-v3模型生成一个2048的特征向量。具体原理不详。
            # 通过Inception-v3模型计算特征向量
            bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, bottleneck_tensor)
            # 将计算得到的特征向量存入文件
            bottleneck_string = ','.join(str(x) for x in bottleneck_values)
            with open(bottleneck_path, 'w') as bottleneck_file:
                bottleneck_file.write(bottleneck_string)
        else:
            # 直接从文件中获取图片相应的特征向量。
            with open(bottleneck_path, 'r') as bottleneck_file:
                bottleneck_string = bottleneck_file.read()
            bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
        # 返回得到的特征向量
        return bottleneck_values
    
    
    # 这个函数随机获取一个batch的图片作为训练数据。
    def get_random_cached_bottlenecks(sess, n_classes, image_lists, how_many, category,
                                      jpeg_data_tensor, bottleneck_tensor):
        bottlenecks = []
        ground_truths = []
        for _ in range(how_many):
            # 随机一个类别和图片的编号加入当前的训练数据。
            label_index = random.randrange(n_classes)
            label_name = list(image_lists.keys())[label_index]
            image_index = random.randrange(65536)
            bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, image_index, category,
                                                  jpeg_data_tensor, bottleneck_tensor)
            ground_truth = np.zeros(n_classes, dtype=np.float32)
            ground_truth[label_index] = 1.0
            bottlenecks.append(bottleneck)
            ground_truths.append(ground_truth)
        return bottlenecks, ground_truths
    
    
    # 这个函数获取全部的测试数据。在最终测试的时候需要在所有的测试数据上计算正确率。
    def get_test_bottlenecks(sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor):
        bottlenecks = []
        ground_truths = []
        label_name_list = list(image_lists.keys())
        # 枚举所有的类别和每个类别中的测试图片。
        for label_index, label_name in enumerate(label_name_list):
            category = 'testing'
            for index, unused_base_name in enumerate(image_lists[label_name][category]):
                # 通过Inception-v3模型计算图片对应的特征向量,并将其加入最终数据的列表。
                bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, index, category,
                                                      jpeg_data_tensor, bottleneck_tensor)
                ground_truth = np.zeros(n_classes, dtype = np.float32)
                ground_truth[label_index] = 1.0
                bottlenecks.append(bottleneck)
                ground_truths.append(ground_truth)
        return bottlenecks, ground_truths
    
    
    def main(_):
        # 读取所有图片。
        image_lists = create_image_lists(TEST_PERCENTAGE, VALIDATION_PERCENTAGE)
        n_classes = len(image_lists.keys())
        # 读取已经训练好的Inception-v3模型。
        # 谷歌训练好的模型保存在了GraphDef Protocol Buffer中,里面保存了每一个节点取值的计算方法以及变量的取值。
        # TensorFlow模型持久化的问题在第5章中有详细的介绍。
        with gfile.FastGFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:
            graph_def = tf.GraphDef()
            graph_def.ParseFromString(f.read())
        # 加载读取的Inception-v3模型,并返回数据输入所对应的张量以及计算瓶颈层结果所对应的张量。
        bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(graph_def, return_elements=[BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME])
        # 定义新的神经网络输入,这个输入就是新的图片经过Inception-v3模型前向传播到达瓶颈层时的结点取值。
        # 可以将这个过程类似的理解为一种特征提取。
        bottleneck_input = tf.placeholder(tf.float32, [None, BOTTLENECK_TENSOR_SIZE], name='BottleneckInputPlaceholder')
        # 定义新的标准答案输入
        ground_truth_input = tf.placeholder(tf.float32, [None, n_classes], name='GroundTruthInput')
        # 定义一层全连接层来解决新的图片分类问题。
        # 因为训练好的Inception-v3模型已经将原始的图片抽象为了更加容易分类的特征向量了,所以不需要再训练那么复杂的神经网络来完成这个新的分类任务。
        with tf.name_scope('final_training_ops'):
            weights = tf.Variable(tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, n_classes], stddev=0.001))
            biases = tf.Variable(tf.zeros([n_classes]))
            logits = tf.matmul(bottleneck_input, weights) + biases
            final_tensor = tf.nn.softmax(logits)
        # 定义交叉熵损失函数
        cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=ground_truth_input)
        cross_entropy_mean = tf.reduce_mean(cross_entropy)
        train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy_mean)
        # 计算正确率
        with tf.name_scope('evaluation'):
            correct_prediction = tf.equal(tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))
            evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
        with tf.Session() as sess:
            tf.global_variables_initializer().run()
            # 训练过程
            for i in range(STEPS):
                # 每次获取一个batch的训练数据
                train_bottlenecks, train_ground_truth = get_random_cached_bottlenecks(
                    sess, n_classes, image_lists, BATCH, 'training', jpeg_data_tensor, bottleneck_tensor)
                sess.run(train_step, feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth})
                # 在验证集上测试正确率。
                if i%100 == 0 or i+1 == STEPS:
                    validation_bottlenecks, validation_ground_truth = get_random_cached_bottlenecks(
                        sess, n_classes, image_lists, BATCH, 'validation', jpeg_data_tensor, bottleneck_tensor)
                    validation_accuracy = sess.run(evaluation_step, feed_dict={
                        bottleneck_input:validation_bottlenecks, ground_truth_input: validation_ground_truth})
                    print('Step %d: Validation accuracy on random sampled %d examples = %.1f%%'
                          % (i, BATCH, validation_accuracy*100))
            # 在最后的测试数据上测试正确率
            test_bottlenecks, test_ground_truth = get_test_bottlenecks(sess, image_lists, n_classes,
                                                                           jpeg_data_tensor, bottleneck_tensor)
            test_accuracy = sess.run(evaluation_step, feed_dict={bottleneck_input: test_bottlenecks,
                                                                     ground_truth_input: test_ground_truth})
            print('Final test accuracy = %.1f%%' % (test_accuracy * 100))
    
    
    if __name__ == '__main__':
        tf.app.run()
      
      
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262

    实验及分析

    1. 训练及测试结果
      这里写图片描述
      2.代码疑问
      不知道大家有注意到没有,数据集里给的是不同大小的图片,而程序里却可以直接送入Inception-v3模型,从而得到同样尺寸的结果特征向量。我在书籍的github上问了这个问题,得到的回复是:Inception-v3模型中包含了图像预处理和大小调整的部分。目前并没有往下继续考究。原问题详见:caicloud/tensorflow-tutorial第6章迁移学习例程疑问
    (function () { ('pre.prettyprint code').each(function () { var lines = (this).text().split(\n).length;var numbering = $('
      ').addClass('pre-numbering').hide(); (this).addClass(hasnumbering).parent().append( numbering); for (i = 1; i

      猜你喜欢

      转载自blog.csdn.net/yuan0061/article/details/72835522