Titanic生存预测

import pandas as pd
#显示所有行(参数设置为None代表显示所有行,也可以自行设置数字)
pd.set_option('display.max_columns',None)
#显示所有列
pd.set_option('display.max_rows',None)
#设置数据的显示长度,默认为50
pd.set_option('max_colwidth',200)
#禁止自动换行(设置为Flase不自动换行,True反之)
pd.set_option('expand_frame_repr', False)
import numpy as np
import re
import sklearn
import xgboost as xgb
import seaborn as sns
import matplotlib.pyplot as plt

import plotly.offline as py
py.init_notebook_mode(connected=True)
import plotly.graph_objs as go
import plotly.tools as tls

import warnings
warnings.filterwarnings('ignore')

# Going to use these 5 base models for the stacking . 注意stacking的过程
from sklearn.ensemble import (RandomForestClassifier, AdaBoostClassifier,
                              GradientBoostingClassifier, ExtraTreesClassifier)
from sklearn.svm import SVC
from sklearn.model_selection import KFold

# Load in the train and test datasets
train = pd.read_csv('/home/zwt/PycharmProjects/test/Machine_Learning/Titanic/train.csv')
test = pd.read_csv('/home/zwt/PycharmProjects/test/Machine_Learning/Titanic/test.csv')

# Store our passenger ID for easy access
PassengerId = test['PassengerId']

train.head(3)

full_data = [train,test]
#下面自己手动添加一下特征值到数据集里

#Features1:名字长度
train['Name_length'] = train['Name'].apply(len)
test['Name_length'] = test['Name'].apply(len)
#Features2:乘客是否有隔间
    #type(x)为float则记为1,否则记为0,空值虽然显示为NAN但其的类型为float,如 type(train['Cabin'][0])输出为float,type(train['Cabin'][1])输出为str
train['Has_cabin'] = train['Cabin'].apply(lambda x: 0 if type(x) == float else 1)
test['Has_cabin'] = test['Cabin'].apply(lambda x: 0 if type(x) == float else 1)
#Feature3:家庭关系进阶版,将原始数据中定义家庭关系的两个变量SibSp和Parch结合起来
for dataset in full_data:
    dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1
#Feature4:是否独自一人在船上,根据家庭关系进阶版设置的特征
for dataset in full_data:
    dataset['IsAlone'] = 0
    dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1
#填补登船港未知的数据
for dataset in full_data:
    dataset['Embarked'] = dataset['Embarked'].fillna('S')
#填补票价的空值并生成新特征Feature5
for dataset in full_data:
    dataset['Fare'] = dataset['Fare'].fillna(train['Fare'].median())
train['CategoricalFare'] = pd.qcut(train['Fare'], 4)  #pd.qcut是为了把票价分成一个个区间,注意qcut和cut的区别
#对年龄空值进行填补
for dataset in full_data:
    age_avg = dataset['Age'].mean()
    age_std = dataset['Age'].std()
    age_null_count = dataset['Age'].isnull().sum()
    age_null_random_list = np.random.randint(age_avg - age_std, age_avg + age_std, size = age_null_count)
    dataset['Age'][np.isnan(dataset['Age'])] = age_null_random_list
    dataset['Age'] = dataset['Age'].astype(int)
train['CategoricalAge'] = pd.cut(train['Age'], 5)   #年龄分区
#定义函数对乘客name一栏中的称谓进行提取
def get_title(name):
    title_search = re.search('([A-Za-z]+)\.', name)
    if title_search:
        return title_search.group(1)
    return ""
#Feature5:乘客称谓
for dataset in full_data:
    dataset['Title'] = dataset['Name'].apply(get_title)

for dataset in full_data:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')

    dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')

#映射特征,全部转换为数字变量
for dataset in full_data:
    #mapping sex
    dataset['Sex'] = dataset['Sex'].map({'female':0, 'male':1}).astype(int)
    #mapping titles
    title_mapping = {'Mr':1 ,'Miss':2, 'Mrs':3, 'Master':4, 'Rare':5}
    dataset['Title'] = dataset['Title'].map(title_mapping)
    dataset['Title'] = dataset['Title'].fillna(0)
    # Mapping Embarked
    dataset['Embarked'] = dataset['Embarked'].map({'S': 0, 'C': 1, 'Q': 2}).astype(int)
    # Mapping Fare
    dataset.loc[dataset['Fare'] <= 7.91, 'Fare'] = 0
    dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1
    dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2
    dataset.loc[dataset['Fare'] > 31, 'Fare'] = 3
    dataset['Fare'] = dataset['Fare'].astype(int)
    # Mapping Age
    dataset.loc[dataset['Age'] <= 16, 'Age'] = 0
    dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1
    dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2
    dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3
    dataset.loc[dataset['Age'] > 64, 'Age'] = 4


#数据处理完毕,选择特征
drop_elements = ['PassengerId', 'Name', 'Ticket', 'Cabin', 'SibSp']
train = train.drop(drop_elements, axis = 1)
train = train.drop(['CategoricalAge', 'CategoricalFare'], axis = 1)
test  = test.drop(drop_elements, axis = 1)

#画热力图看各个特征值之间的关联度
colormap = plt.cm.RdBu
plt.figure(figsize = (14,12))
plt.title('Pearson Correlation of Features', y = 1.05, size = 15)
sns.heatmap(train.astype(float).corr(), linewidths = 0.1, vmax = 1.0, square = True, cmap = colormap, linecolor = 'white', annot = True)
#结果显示,除了Family size和Parch之间,各特征之间没有较高的相关性,对机器学习是有帮助的,说明各特征之间具有较强的独立性,包含更多的信息、更少的信息冗余

#编写类来帮助后面我们调用不同的分类方法
# Some useful parameters which will come in handy later on
ntrain = train.shape[0]
ntest = test.shape[0]
SEED = 0 # for reproducibility
NFOLDS = 5 # set folds for out-of-fold prediction
kfold = KFold(n_splits = NFOLDS, random_state = SEED)
kf = kfold.split(train)


# Class to extend the Sklearn classifier
class SklearnHelper(object):
    def __init__(self, clf, seed=0, params=None):
        params['random_state'] = seed
        self.clf = clf(**params)

    def train(self, x_train, y_train):
        self.clf.fit(x_train, y_train)

    def predict(self, x):
        return self.clf.predict(x)

    def fit(self, x, y):
        return self.clf.fit(x, y)

    def feature_importances(self, x, y):
        print(self.clf.fit(x, y).feature_importances_)

# Class to extend XGboost classifer
def get_oof(clf, x_train, y_train, x_test):
    oof_train = np.zeros((ntrain,))
    oof_test = np.zeros((ntest,))
    oof_test_skf = np.empty((NFOLDS, ntest))

    for i, (train_index, test_index) in enumerate(kf):
        x_tr = x_train[train_index]
        y_tr = y_train[train_index]
        x_te = x_train[test_index]

        clf.train(x_tr, y_tr)

        oof_train[test_index] = clf.predict(x_te)
        oof_test_skf[i, :] = clf.predict(x_test)

    oof_test[:] = oof_test_skf.mean(axis=0)
    return oof_train.reshape(-1, 1), oof_test.reshape(-1, 1)


# Put in our parameters for said classifiers
# Random Forest parameters
rf_params = {
    'n_jobs': -1,
    'n_estimators': 500,
     'warm_start': True,
     #'max_features': 0.2,
    'max_depth': 6,
    'min_samples_leaf': 2,
    'max_features' : 'sqrt',
    'verbose': 0
}

# Extra Trees Parameters
et_params = {
    'n_jobs': -1,
    'n_estimators':500,
    #'max_features': 0.5,
    'max_depth': 8,
    'min_samples_leaf': 2,
    'verbose': 0
}

# AdaBoost parameters
ada_params = {
    'n_estimators': 500,
    'learning_rate' : 0.75
}

# Gradient Boosting parameters
gb_params = {
    'n_estimators': 500,
     #'max_features': 0.2,
    'max_depth': 5,
    'min_samples_leaf': 2,
    'verbose': 0
}

# Support Vector Classifier parameters
svc_params = {
    'kernel' : 'linear',
    'C' : 0.025
    }

# Create 5 objects that represent our 4 models
rf = SklearnHelper(clf=RandomForestClassifier, seed=SEED, params=rf_params)
et = SklearnHelper(clf=ExtraTreesClassifier, seed=SEED, params=et_params)
ada = SklearnHelper(clf=AdaBoostClassifier, seed=SEED, params=ada_params)
gb = SklearnHelper(clf=GradientBoostingClassifier, seed=SEED, params=gb_params)
svc = SklearnHelper(clf=SVC, seed=SEED, params=svc_params)


# Create Numpy arrays of train, test and target ( Survived) dataframes to feed into our models
y_train = train['Survived'].ravel()
train = train.drop(['Survived'], axis=1)
x_train = train.values # Creates an array of the train data
x_test = test.values # Creats an array of the test data

# Create our OOF train and test predictions. These base results will be used as new features
et_oof_train, et_oof_test = get_oof(et, x_train, y_train, x_test) # Extra Trees
rf_oof_train, rf_oof_test = get_oof(rf, x_train, y_train, x_test) # Random Forest
ada_oof_train, ada_oof_test = get_oof(ada, x_train, y_train, x_test) # AdaBoost
gb_oof_train, gb_oof_test = get_oof(gb, x_train, y_train, x_test) # Gradient Boost
svc_oof_train, svc_oof_test = get_oof(svc, x_train, y_train, x_test) # Support Vector Classifier

print("Training is complete")

#输出各个模型的性能特征
rf_feature = rf.feature_importances(x_train,y_train)
et_feature = et.feature_importances(x_train, y_train)
ada_feature = ada.feature_importances(x_train, y_train)
gb_feature = gb.feature_importances(x_train,y_train)
#手动将性能特征以列表形式复制给变量(11个数值分别对应11个特征的重要程度)
rf_feature = [0.11074583, 0.24280623, 0.03293436, 0.02004395, 0.04902856, 0.02234903, 0.11151027, 0.06718905, 0.07099594, 0.01131659, 0.26108018]
et_feature = [0.11860983, 0.37755262, 0.02632776, 0.01763431, 0.05555148, 0.02909049, 0.04819049, 0.0852282,  0.04603893, 0.02063341, 0.17514248]
ada_feature = [0.03, 0.012, 0.014, 0.066, 0.04, 0.01, 0.688, 0.014, 0.056, 0, 0.07 ]
gb_feature = [0.08952558, 0.01251838, 0.0507058, 0.01486893, 0.0519019, 0.02562565, 0.17077917, 0.03627126, 0.11332225, 0.00654679, 0.42793428]

#创建数据框以便画图
cols = train.columns.values
# Create a dataframe with features
feature_dataframe = pd.DataFrame( {'features': cols,
     'Random Forest feature importances': rf_feature,
     'Extra Trees  feature importances': et_feature,
      'AdaBoost feature importances': ada_feature,
    'Gradient Boost feature importances': gb_feature
    })

#画图
# Scatter plot
trace = go.Scatter(
    y = feature_dataframe['Random Forest feature importances'].values,
    x = feature_dataframe['features'].values,
    mode='markers',
    marker=dict(
        sizemode = 'diameter',
        sizeref = 1,
        size = 25,
        #size= feature_dataframe['AdaBoost feature importances'].values,
        #color = np.random.randn(500), #set color equal to a variable
        color = feature_dataframe['Random Forest feature importances'].values,
        colorscale='Portland',
        showscale=True
    ),
    text = feature_dataframe['features'].values
)
data = go.Data([trace])

layout= go.Layout(
    autosize= True,
    title= 'Random Forest Feature Importance',
    hovermode= 'closest',
#     xaxis= dict(
#         title= 'Pop',
#         ticklen= 5,
#         zeroline= False,
#         gridwidth= 2,
#     ),
    yaxis=dict(
        title= 'Feature Importance',
        ticklen= 5,
        gridwidth= 2
    ),
    showlegend= False
)
fig = go.Figure(data=data, layout=layout)
py.plot(fig,filename='scatter1')
# Scatter plot
trace = go.Scatter(
    y = feature_dataframe['Extra Trees  feature importances'].values,
    x = feature_dataframe['features'].values,
    mode='markers',
    marker=dict(
        sizemode = 'diameter',
        sizeref = 1,
        size = 25,
#       size= feature_dataframe['AdaBoost feature importances'].values,
        #color = np.random.randn(500), #set color equal to a variable
        color = feature_dataframe['Extra Trees  feature importances'].values,
        colorscale='Portland',
        showscale=True
    ),
    text = feature_dataframe['features'].values
)
data = [trace]

layout= go.Layout(
    autosize= True,
    title= 'Extra Trees Feature Importance',
    hovermode= 'closest',
#     xaxis= dict(
#         title= 'Pop',
#         ticklen= 5,
#         zeroline= False,
#         gridwidth= 2,
#     ),
    yaxis=dict(
        title= 'Feature Importance',
        ticklen= 5,
        gridwidth= 2
    ),
    showlegend= False
)
fig = go.Figure(data=data, layout=layout)
py.plot(fig,filename='scatter2')

# Scatter plot
trace = go.Scatter(
    y = feature_dataframe['AdaBoost feature importances'].values,
    x = feature_dataframe['features'].values,
    mode='markers',
    marker=dict(
        sizemode = 'diameter',
        sizeref = 1,
        size = 25,
#       size= feature_dataframe['AdaBoost feature importances'].values,
        #color = np.random.randn(500), #set color equal to a variable
        color = feature_dataframe['AdaBoost feature importances'].values,
        colorscale='Portland',
        showscale=True
    ),
    text = feature_dataframe['features'].values
)
data = [trace]

layout= go.Layout(
    autosize= True,
    title= 'AdaBoost Feature Importance',
    hovermode= 'closest',
#     xaxis= dict(
#         title= 'Pop',
#         ticklen= 5,
#         zeroline= False,
#         gridwidth= 2,
#     ),
    yaxis=dict(
        title= 'Feature Importance',
        ticklen= 5,
        gridwidth= 2
    ),
    showlegend= False
)
fig = go.Figure(data=data, layout=layout)
py.plot(fig,filename='scatter3')

# Scatter plot
trace = go.Scatter(
    y = feature_dataframe['Gradient Boost feature importances'].values,
    x = feature_dataframe['features'].values,
    mode='markers',
    marker=dict(
        sizemode = 'diameter',
        sizeref = 1,
        size = 25,
#       size= feature_dataframe['AdaBoost feature importances'].values,
        #color = np.random.randn(500), #set color equal to a variable
        color = feature_dataframe['Gradient Boost feature importances'].values,
        colorscale='Portland',
        showscale=True
    ),
    text = feature_dataframe['features'].values
)
data = [trace]

layout= go.Layout(
    autosize= True,
    title= 'Gradient Boosting Feature Importance',
    hovermode= 'closest',
#     xaxis= dict(
#         title= 'Pop',
#         ticklen= 5,
#         zeroline= False,
#         gridwidth= 2,
#     ),
    yaxis=dict(
        title= 'Feature Importance',
        ticklen= 5,
        gridwidth= 2
    ),
    showlegend= False
)
fig = go.Figure(data=data, layout=layout)
py.plot(fig,filename='scatter4')


#Create the new column containing the average of values
feature_dataframe['mean'] = feature_dataframe.mean(axis= 1) # axis = 1 computes the mean row-wise
feature_dataframe.head(5)


y = feature_dataframe['mean'].values
x = feature_dataframe['features'].values
data = [go.Bar(
            x= x,
             y= y,
            width = 0.5,
            marker=dict(
               color = feature_dataframe['mean'].values,
            colorscale='Portland',
            showscale=True,
            reversescale = False
            ),
            opacity=0.6
        )]

layout= go.Layout(
    autosize= True,
    title= 'Barplots of Mean Feature Importance',
    hovermode= 'closest',
#     xaxis= dict(
#         title= 'Pop',
#         ticklen= 5,
#         zeroline= False,
#         gridwidth= 2,
#     ),
    yaxis=dict(
        title= 'Feature Importance',
        ticklen= 5,
        gridwidth= 2
    ),
    showlegend= False
)
fig = go.Figure(data=data, layout=layout)
py.plot(fig, filename='bar-direct-labels')

#将第一次预测的结果作为新的变量,加入到原数据中,进行下一次分类
base_predictions_train = pd.DataFrame( {'RandomForest': rf_oof_train.ravel(),
     'ExtraTrees': et_oof_train.ravel(),
     'AdaBoost': ada_oof_train.ravel(),
      'GradientBoost': gb_oof_train.ravel()
    })
base_predictions_train.head(20)

#热力图
data = [
    go.Heatmap(
        z= base_predictions_train.astype(float).corr().values,
        x= base_predictions_train.columns.values,
        y= base_predictions_train.columns.values,
        colorscale='Viridis',
        showscale=True,
        reversescale = True
    )
]
py.plot(data, filename='labelled-heatmap')
View Code

8oao

猜你喜欢

转载自www.cnblogs.com/zwtgyh/p/10929306.html