均值不等式四个公式

假设有一根长度为24cm的钢筋,现在对其进行截取焊接成一个长方体框架,

如何截取焊接才能保证长方体的体积最大?

下面引出均值不等式可以解决这个问题。

a_{i}> 0,n\geq 2

数组a_{1},a_{2},......,a_{n} a_{i}> 0A_{1}= \sqrt{\frac{a_{1}^{2}+a_{2}^{2}+......+a_{n}^{2}}{n}}

A_{2}= \frac{a_{1}+a_{2}+......+a_{n}}{n}

A_{3}= \sqrt[n]{a_{1}a_{2}......a_{n}}

A_{4}= \frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+......+\frac{1}{a_{n}}}

则有:

        A_{1}\geq A_{2}\geq A_{3}\geq A_{4}

A_{2}\geq A_{3}进行证明:

构建两个序列

X_{1}= \frac{a_{1}}{A_{3}^{1}},X_{2}= \frac{a_{1}a_{2}}{A_{3}^{2}},.....,X_{n}= \frac{a_{1}a_{2}......a_{n}}{A_{3}^{n}}= 1

Y_{1}= \frac{1}{X_{1}},Y_{2}= \frac{1}{X_{2}},......,Y_{n}= \frac{1}{X_{n}}

由排序不等式 顺序和≥乱序和≥倒序和 显然有下列不等式关系

X_{1}Y_{n}+X_{2}Y_{1}+......+X_{n}Y_{n-1}\geq X_{1}Y_{1}+X_{2}Y_{2}+......+X_{n}Y_{n}

a_{1}+a_{2}+......+a_{n}\geq nA_{3}

A_{2}\geq A_{3}

接下来利用这个关系证明

A_{3}\geq A_{4}

\frac{1}{a_{1}}+\frac{1}{a_{2}}+......+\frac{1}{a_{n}}

\dpi{80} \geq n\sqrt[n]{\frac{1}{a_{1}a_{2}......a_{n}}}

= \frac{n}{\sqrt[n]{a_{1}a_{2}......a_{n}}}

不等式两边同时取倒数

\frac{1}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+......+\frac{1}{a_{n}}}\leq \frac{1}{\frac{n}{\sqrt[n]{a_{1}a_{2}......a_{n}}}}

不等式两边同时乘以n

\frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+......+\frac{1}{a_{n}}}\leq \sqrt[n]{a_{1}a_{2}......a_{n}}

A_{3}\geq A_{4}

得证

接下来证明

A_{1}\geq A_{2}

\frac{a_{1}^{2}+a_{2}^{2}+......+a_{n}^{2}}{n}

= [(\frac{1}{n})^{2}+(\frac{1}{n})^{2}+......+(\frac{1}{n})^{2}](a_{1}^{2}+a_{2}^{2}+......+a_{n}^{2})

由 柯西施瓦茨不等式 可得

\geq (\frac{a_{1}+a_{2}+......+a_{n}}{n})^{2}

然后两边同时开平方可得

A_{1}\geq A_{2}

得证

四个均值不等式得证

\sqrt{\frac{\sum (i=1,n) _{a_{i}}^{2}}{n}}\geq \frac{\sum (i=1,n)a_{i}}{n}\geq \sqrt[n]{\prod_{i= 1}^{n}a_{i}}\geq \frac{n}{\sum (i=1,n)\frac{1}{a_{i}}}

等号成立条件

a_{1}= a_{2}= ......= a_{n}

对此可以解决上面的实际问题了

猜你喜欢

转载自blog.csdn.net/weixin_41170664/article/details/81196002