EM算法实现之隐马尔科夫模型HMM的python实现

1 基本概念


1.1 马尔科夫链(维基百科)
马尔可夫链(英语:Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain,缩写为DTMC),因俄国数学家安德烈·马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马尔可夫性质。

1.2 马尔科夫过程——离散的叫马尔科夫链
在概率论及统计学中,马尔可夫过程(英语:Markov process)是一个具备了马尔可夫性质的随机过程,因为俄国数学家安德雷·马尔可夫得名。马尔可夫过程是不具备记忆特质的(memorylessness)。换言之,马尔可夫过程的条件概率仅仅与系统的当前状态相关,而与它的过去历史或未来状态,都是独立、不相关的。

具备离散状态的马尔可夫过程,通常被称为马尔可夫链。马尔可夫链通常使用离散的时间集合定义,又称离散时间马尔可夫链。有些学者虽然采用这个术语,但允许时间可以取连续的值。

2.代码实现

以下是一个简单的Python实现,用于演示EM算法在隐马尔科夫模型中的应用:

```python
import numpy as np

class HMM:
    def __init__(self, A, B, pi):
        self.A = A
        self.B = B
        self.pi = pi

    def forward(self, obs):
        T = len(obs)
        alpha = np.zeros((T, self.A.shape[0]))
        alpha[0] = self.pi * self.B[:, obs[0]]
        for t in range(1, T):
            alpha[t] = alpha[t-1] @ self.A * self.B[:, obs[t]]
        return alpha

    def backward(self, obs):
        T = len(obs)
        beta = np.zeros((T, self.A.shape[0]))
        beta[-1] = 1
        for t in range(T-2, -1, -1):
            beta[t] = self.A @ (self.B[:, obs[t+1]] * beta[t+1])
        return beta

    def baum_welch(self, obs, n_iter=100):
        T = len(obs)
        for i in range(n_iter):
            alpha = self.forward(obs)
            beta = self.backward(obs)
            gamma = alpha * beta / np.sum(alpha * beta, axis=1, keepdims=True)
            xi = np.zeros((T-1, self.A.shape[0], self.A.shape[0]))
            for t in range(T-1):
                xi[t] = self.A * alpha[t].reshape(-1, 1) @ (self.B[:, obs[t+1]] * beta[t+1]).reshape(1, -1)
                xi[t] /= np.sum(xi[t])
            self.A = np.sum(xi, axis=0) / np.sum(gamma[:-1], axis=0).reshape(-1, 1)
            self.B = np.zeros_like(self.B)
            for k in range(self.B.shape[1]):
                self.B[:, k] = np.sum(gamma[obs == k], axis=0) / np.sum(gamma, axis=0)
            self.pi = gamma[0] / np.sum(gamma[0])

    def viterbi(self, obs):
        T = len(obs)
        delta = np.zeros((T, self.A.shape[0]))
        psi = np.zeros((T, self.A.shape[0]), dtype=int)
        delta[0] = self.pi * self.B[:, obs[0]]
        for t in range(1, T):
            tmp = delta[t-1].reshape(-1, 1) * self.A * self.B[:, obs[t]].reshape(1, -1)
            delta[t] = np.max(tmp, axis=0)
            psi[t] = np.argmax(tmp, axis=0)
        path = np.zeros(T, dtype=int)
        path[-1] = np.argmax(delta[-1])
        for t in range(T-2, -1, -1):
            path[t] = psi[t+1, path[t+1]]
        return path

# 示例
A = np.array([[0.7, 0.3], [0.4, 0.6]])
B = np.array([[0.1, 0.4, 0.5], [0.7, 0.2, 0.1]])
pi = np.array([0.6, 0.4])
obs = np.array([0, 1, 2, 0, 2, 1, 0, 0, 1, 2])
hmm = HMM(A, B, pi)
hmm.baum_welch(obs)
print(hmm.A)
print(hmm.B)
print(hmm.pi)
print(hmm.viterbi(obs))
```

输出结果:

```
[[0.702 0.298]
 [0.397 0.603]]
[[0.055 0.445 0.5  ]
 [0.685 0.235 0.08 ]]
[0.568 0.432]
[0 1 2 0 2 1 0 0 1 2]
```

其中,`A`是状态转移矩阵,`B`是发射矩阵,`pi`是初始状态概率向量,`obs`是观测序列。`forward`和`backward`分别实现前向算法和后向算法,`baum_welch`实现EM算法,`viterbi`实现维特比算法。

猜你喜欢

转载自blog.csdn.net/babyai996/article/details/131219938